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Generative Networks

eEstimate Observables via annealed importance sampling,
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(' ): un-normalized target distribution.

(' ): normalized model distribution.
Precondition : normalization constant

1. Support set {1} { }

2. Distribution not far away from Supportset  {}={ | #0}

could be estimated by neural networks!



Generative Networks

eEstimate Observables via annealed importance sampling,
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Available neural network:

Train on Function Train on Data
Normalizing flow (NF), Langevin based diffusion model,
[Kim A. Nicoli, et al., arXiv:2007.07115 [hep-lat]] [Lingxiao Wang,et al., arXiv:2309.17082 [hep-lat]]

[Ryan Abbott, et al., arXiv:2207.08945 [hep-lat]]

Continuous flow, A-Nice-MC

[Mathis Gerdes, et al., arXiv:2207.00283 [hep-lat]] [Jiaming Song, et al., arXiv:1706.07561 [stat.M]]

Hamiltonian neural network,

[Sam Greydanus, et al., arXiv:1906.01563 [cs.NE]] NF using adversarial lea rning

Stochastic NF [Vikas Kanaujia, et al., arXiv:2401.15948 [cs.LG]]

[Michele Caselle. et al., arXiv:2210.03139 [hep-lat]] ' 4
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Topology Problem

Topology: Geometry feature preserved under continuous

maps. .
Connectivity, Compactness, Countability, etc.
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Triple Ring Normal Distribution
Triple Ring: a disconnected and Normal Distribution: a simple
compact Manifold. connected and non-compact

Manifold.



Topology Problem

elnvertible Flows are topology preserved map
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Flow models are differentible,
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continuous and invertible.
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Target:Triple Ring
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( ): the prior and
Normal distribution

Modeled manifold is diffeomorphism
to the prior manifold

Modeled manifold:
1. open ring

2. simple connected

and non-compact
3. outer rings missing

-1 0

Model: NF

1
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Topology Problem

® Avoid dependence of the choice of hyper-parameters.

1. ldeal case to the worst output from the network;
2. Improve the architecture.

® The diffusion network learns from the action.

1. Drift and diffusion for forward and backward are
estimated by two independent networks.

2.Results from diffusion will be different from one
learning from data.



Topology Problem

eLangevin Based Diffusion may suffer from topology problem

carefully chosen hype-parameters and
prior will lead to a better result.

N B Modeled manifold:

L) 1. closed ring
2. connected and compact
3. outer rings missing

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

4. Network trapped at local
Target:Triple Ring Model: Diffusion minimum



Topology Problem
e [he expected worst outcome for ideal case (understand

from topology side)
+1 — o ( ) + V2 ( ) , ~Gauss
1. Idealcase: ( )and ( ) are continuous maps

2. Continuous map preserves topology

3. For two connected vector space, and

The vectorspace 1 ={ + | , } and
> =1{ | , , } are connected vector space.

* The modelled manifold is connected.



Topology Problem

eLangevin Based Diffusion may suffer from topology problem

carefully chosen hype-parameters and
prior will lead to a better result.

.| ] Tips:

1 1 1. Action/energy

o 1 £ functions suggested to
be an augment,

2. RelLu and Leaky Relu

R 2 T L S encouraged to use.
Target: Triple Ring Model: Diffusion
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Our network

Pre(zgilze, s(zt))

P(zf, 2, Zp,t)

Pb,t(Zb,HZpS(Zf) —,é

(| , ()): forward process
(| , ()): backward process
( ): action
« (|, ())istheinverse
processof (| , ( ));
- .. ,C .1, C)and
( , , ) estimated by networks;

- . 1o Cn C T C0))
have time dependence;

* Possible way to generate multiple and
well seperated models.
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Our network

Pre(zfilze, s(2¢))

(| , ): forward process

(.| . ): backward process

P(zf, 2, Zp,t)

Ppe(Zptlze, s(z¢)

( +1)= ( +1—

+(+1_ )

+1| ! y , , ’ | r

)

+1| y +1 +1; ’ +1 ’ +1 I ’,
+1| ) ' ’ ’ ’ I y

+1| C+1 +1, C+1 S +1 | o

Trian network by inverse Kullback—Leibler (KL) divergence 12



Our network

Target:Triple Ring Model:Our network

« (Good samples from correct support set
* Noisy samples
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2D- theory

» 2D- “*model has , symmetry, ( )= (- ),
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™ =" Flow models for multiple peak
50 4 [Daniel C. Hackett, arXiv:2107.00734[hep-lat]]
-1
0 _> 1 0 i . 2 ( ) — ( ) -1
50 Il Diffusion ( )
5 | & 1. { }: afinite group of invertible
oM, . . . . transformation .
- -1 0 i 2

M 2. break invertibility



2D - theory

» 2D- “*model has , symmetry, ( )= (- ),

, | |= x =64x32
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I NF
100
50 -  Invertible NF and diffusion models
S ) z ; z recover one peak,
50 - == piffusion | o Stochastic mean pathway help
25 - generate ,configurations




Summary

elnvertible flow based and diffusion (possible) methods
suffer from topology problem if the network learns from the
action;

eSome part of configurations may not be generated with
invertible flows and diffusion models;

e Stochastic mean pathway helps sample for seperated
models.



