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Generative Networks
●Estimate Observables via annealed importance sampling,

��~�(�) �(�) =  ��
�(�)
�

�(�) ≈
 �~�(�) �(�)�(�)

 �~�(�) �(�)
, �(�) =  

�(�)
�(�)

.

   Precondition

1.  Support set ����{�} ⊂ ����{�};
2.  Distribution � not far away from �. Support set ����{�} = {∀�|� ≠ 0}

� could be estimated by neural networks!

�(�): un-normalized target distribution.
�(�): normalized model distribution.
�: normalization constant
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Generative Networks
●Estimate Observables via annealed importance sampling,

��~�(�) �(�) =  ��
�(�)
�

�(�) ≈
 �~�(�) �(�)�(�)

 �~�(�) �(�)
, �(�) =  

�(�)
�(�)

.

   Available neural network:
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  Normalizing flow (NF),
    [Kim A. Nicoli, et al., arXiv:2007.07115 [hep-lat]]
    [Ryan Abbott, et al., arXiv:2207.08945 [hep-lat]]

Continuous flow,   
[Mathis Gerdes, et al., arXiv:2207.00283 [hep-lat]] 

Train on Function 

Hamiltonian neural network,
[Sam Greydanus, et al., arXiv:1906.01563 [cs.NE]] 

Train on Data
Langevin based diffusion model, 
[Lingxiao Wang,et al., arXiv:2309.17082 [hep-lat]]

Stochastic NF
[Michele Caselle. et al., arXiv:2210.03139 [hep-lat]]

A-Nice-MC 
[Jiaming Song, et al., arXiv:1706.07561 [stat.M]]

NF using adversarial learning
[Vikas Kanaujia, et al., arXiv:2401.15948 [cs.LG]]



Topology Problem

 Normal DistributionTriple Ring

Topology: Geometry feature preserved under continuous      
maps.

   Connectivity, Compactness, Countability, etc.

Triple Ring: a disconnected and 
compact Manifold.

Normal Distribution: a simple 
connected and non-compact 
Manifold. 5



Topology Problem
●Invertible Flows are topology preserved map

�(�) = �(�) 
��
��

  −1

Flow models are differentible, 
continuous and invertible.  

Modeled manifold is diffeomorphism 
to the prior manifold   

Target:Triple Ring Model: NF

Modeled manifold:

1. open ring
2. simple connected 
and non-compact

�(�): the prior and 
Normal distribution 

3. outer rings missing
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Topology Problem
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l Avoid dependence of the choice of hyper-parameters.   

1. Ideal case to the worst output from the network;
2. Improve the architecture.

l The diffusion network learns from the action.
1.Drift and diffusion for forward and backward are 

estimated by two independent networks.
2.Results from diffusion will be different from one 

learning from data.  



Topology Problem

●Langevin Based Diffusion may suffer from topology problem   

Target:Triple Ring Model: Diffusion

Modeled manifold:

1. closed ring
2. connected and compact
3. outer rings missing
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carefully chosen hype-parameters and 
prior will lead to a better result.

4. Network trapped at local 
minimum 



Topology Problem
●The expected worst outcome for ideal case (understand 

from topology side)    
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��+1 = �� − ��(��)�� +  2����(��)� �, � �~Gauss

1. Ideal case:��(��) and ��(��) are continuous maps

2. Continuous map preserves topology 

3. For two connected vector space, � and � , 

The vector space �1 = {� + �| ∀� ∈ �, ∀� ∈ �} and  
 �2 = {��| ∀� ∈ �, ∀� ∈ �, } are connected vector space.

• The modelled manifold is connected.



Topology Problem

●Langevin Based Diffusion may suffer from topology problem   

Target:Triple Ring Model: Diffusion

Tips:

1. Action/energy 
functions suggested to 
be an augment,

2. ReLu and Leaky ReLu 
encouraged to use.  
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carefully chosen hype-parameters and 
prior will lead to a better result.



Our network

• ��,�(��,�|��, �(��)) is the inverse  
process of ��,�(��,�|��, �(��)); 

• ��,�(��,�|��, �(��)), ��,�(��,�|��, �(��)) and 
�(��,�, ��, ��,�) estimated by networks;

•  ��,�(��,�|��, �(��)), ��,�(��,�|��, �(��)) 
have time dependence;

• Possible way to generate multiple and 
well seperated models.
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��,�(��,�|��, �(��)):  forward process
��,�(��,�|��, �(��)):  backward process
�(��): action



Our network

��,�(��,�|��, ��):  forward process
��,�(��,�|��, ��):  backward process
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�(��+1) = �(��+1 − ��,�)
� ��+1|��,�, ��, ��,� ��,� ��,�|��,, �� 

� ��+1|��,�+1, ��+1, ��,�+1 ��,�+1 ��|��,�, �� 
 �(��)

                          + �(��+1 − ��,�)
� ��+1|��,�, ��, ��,� ��,� ��,�|��,, �� 

� ��+1|��,�+1, ��+1, ��,�+1 ��,�+1 ��|��,�, �� 
�(��)

Trian network by inverse Kullback–Leibler (KL) divergence



Our network

Target:Triple Ring Model:Our network

•  Good samples from correct support set
• Noisy samples 
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2D-��  theory
• 2D-�4 model has ℤ2 symmetry, �(�) = �(−�), 

 �(�) =  �∈� −2� �=1
2 ����+� + (1 − 2�)��

2 + ���
4
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 Flow models for multiple peak

����(�) = �(�) 
�

��−1 ∘ �
�(�� ∘ ��−1 ∘ �)

 
��� ∘ �

��
 

1. {��} ：a finite group of invertible 
transformation 

2. break invertibility

|�| = �� × �� = 64 × 32

� = 0.022,   � = 0.3  

� =
1

|�|
 
�∈�

�

[Daniel C. Hackett, arXiv:2107.00734[hep-lat]]



2D-��  theory
• 2D-�4 model has ℤ2 symmetry, �(�) = �(−�), 

 �(�) =  �∈� −2� �=1
2 ����+� + (1 − 2�)��

2 + ���
4

• Invertible NF and diffusion models 
recover one peak, 

• Stochastic mean pathway help 
generate ℤ2configurations 
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|�| = �� × �� = 64 × 32

� = 0.022,   � = 0.3  

� =
1

|�|
 
�∈�

�



Summary

●Invertible flow based and diffusion (possible) methods 
suffer from topology problem if the network learns from the 
action;

●Some part of configurations may not be generated with 
invertible flows and diffusion models;

●Stochastic mean pathway helps sample for seperated 
models.
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