Improvement of Heatbath Algorithm in LFT using Generative model 41st Lattice Conference, Liverpool, UK

Ankur Singha

ML group, BIFOLD TU Berlin

Collaborators: Ali Faraz, Prof. Dipankar Chakraborti, Prof. Vipul Arora, Dr. Shinichi Nakajima.

Introduction

Generative Models for Sampling Lattices

- Albergo et al. (2019): Normalizing flows for Phi4 theory.
- Nicoli et al. (2020, 2021): Used NF for thermodynamic observables and mode collapse in Phi4 theory.
- Kanwar et al. (2020), Boyda et al. (2020): Applied forward KL optimization of NF for U(1), SU(N) gauge theories.
- Singha et al. (2022, 2023) : Conditional Normalizing flows for LFT.
- Gerdes et al. (2022, 2023): Continuous Normalizing flows for LFT.
- Caselle et al. (2022): Stochastic Normalizing flows for LFT.
- Wang et al. (2023): Diffusion model for LFT.
- Abbott et al. (2023, 2024): Sampled QCD fields with gauge-equivariant flow models.

Exploring the Heat-Bath Algorithm

- **Motivation**: Generative models are promising but complex. Heat-Bath offers a simpler, exact method.
- **Objective**: Investigate Heat-Bath algorithm's performance, especially construct a good proposal.

Introduction: Gibbs Sampling & Heat-Bath

Objective: A Markov Chain Monte Carlo (MCMC) algorithm used to sample from a joint probability distribution $P(x_1, x_2, ..., x_n)$. **Steps in Gibbs Sampling:**

Initialization: Start with an initial state $(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$.

Iterative Sampling:

$$\begin{aligned} x_1^{(t+1)} &\sim P(x_1 \mid x_2^{(t)}, x_3^{(t)}, \dots, x_n^{(t)}) \\ x_2^{(t+1)} &\sim P(x_2 \mid x_1^{(t+1)}, x_3^{(t)}, \dots, x_n^{(t)}) \\ &\vdots \\ x_n^{(t+1)} &\sim P(x_n \mid x_1^{(t+1)}, x_2^{(t+1)}, \dots, x_{n-1}^{(t+1)}) \end{aligned}$$

O This is a sequential single site update from the conditional distribution.

Gibbs sampling & Heat-Bath

In lattice theories the number of conditions can be few only, like local theories,

$$P(x_1 \mid x_2^{(t)}, x_3^{(t)}, \dots, x_n^{(t)}) = P(x_1 \mid x_2^{(t)}, x_3^{(t)}, x_4^{(t)}, x_5^{(t)})$$

- If the conditional distribution can be factorise further, then parallel sampling is possible: Heatbath.
- This makes Heat-bath as faster sampling method.
- Sampling is done at two steps:

$$X_{odd}^{(t)} \sim P(X_{odd} | X_{even})$$
$$X_{even}^{(t+1)} \sim P(X_{even}^t | X_{odd})$$

Heat-Bath: Discrete Case

• Ising: Probabilities for state $s_i = +1$ and $s_i = -1$,

$$P(s_i = +1) = \frac{e^{\beta h_i}}{e^{\beta h_i} + e^{-\beta h_i}}, \ P(s_i = -1) = \frac{e^{-\beta h_i}}{e^{\beta h_i} + e^{-\beta h_i}}$$

- Draw a random number u from a uniform distribution U(0,1).
- Set $s_i = +1$ if $u < P(s_i = +1)$, otherwise set $s_i = -1$.
- q state spins: Probabilities

$$P(s_i = k) = \frac{e^{\beta J n_k}}{\sum_{l=1}^q e^{\beta J n_l}}$$

- Sample *s_i* from this distribution:
- Draw a random number u from a uniform distribution U(0, 1).
- Use cumulative probabilities to determine the state k:

$$k =$$
smallest integer such that $\sum_{m=1}^{k} P(s_i = m) > u$

Heatbath: Continuous Case

Probability Distribution:

$$P(\varphi_x) \propto \exp(-S(\varphi_x))$$

Cumulative Distribution Function:

$$F(\varphi_x) = \int_{-\infty}^{\varphi_x} P(\varphi') \, d\varphi'$$

Numerical Integration:

Evaluating the CDF $F(\varphi_x)$ non-trivial, often requires numerical methods. Thus need looks alternate methods such as rejection sampling.

Heat-Bath: Rejection Sampling

Action for Scalar LFT:

• The local action is given by:

$$S_{loc}(\varphi_{i,j},\lambda,m^2,\kappa_{i,j}) = \left(m^2 + 4\right)\varphi_{i,j}^2 + \lambda\varphi_{i,j}^4 - 2\varphi_{i,j}\kappa_{i,j}$$

• Where:

$$\kappa_{i,j} = \varphi_{i+1,j} + \varphi_{i,j+1} + \varphi_{i-1,j} + \varphi_{i,j-1}$$

• λ and m are theory parameters.

Target Distribution:

• The normalized target distribution is:

$$p(\varphi_{i,j}) = \frac{1}{Z} \exp\left(-S_{loc}(\varphi_{i,j}, \lambda, m^2, \kappa_{i,j})\right)$$

• This represents the distribution we want to sample from.

Edwards, R. G., et al. Nuclear Physics B 10.1016/0550-3213(91)90357-4

Heat-Bath Algorithm: Rejection Sampling

Proposal Distribution:

• For Gaussian proposal distribution:

$$g(\varphi) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\varphi-\mu)^2}{2\sigma^2}\right)$$

where,

$$\mu = \frac{\kappa_{i,j}}{m^2 + 4}, \ \sigma^2 = \frac{1}{2(m^2 + 4)}$$

Heat-Bath Algorithm:

• For each site
$$(i, j)$$
:

- Calculate $\mu = \frac{\kappa_{i,j}}{m^2+4}$ and $\sigma^2 = \frac{1}{2(m^2+4)}$ from the Gaussian approximation.
- Draw a candidate $\varphi_{i,j}$ from the Gaussian distribution.
- Accept the candidate with probability:

$$\exp\left(-\lambda\varphi^4\right)$$

• If rejected, draw a new candidate and repeat until accepted.

Challenges with Continuous Degrees of Freedom

Challenges in Heatbath with rejection sampling

- The primary challenge with this rejection method is finding an effective proposal distribution.
- A poor proposal distribution can result in a high rejection rate, which increases the overall simulation cost.
- The proposal distribution needs to be adjusted for different regions of the action parameters.
- Occasionally, the same type of proposal distribution may not be effective for simulations in parameter regimes where the target distribution has multiple modes.

イロト イポト イヨト イヨト

Target: The conditional distribution of the lattice site (i, j) can be written as

$$p(\varphi_{i,j}|\lambda, m^2, \kappa_{i,j}) = p(\varphi_{i,j}|\mathbf{v}_{i,j}) \propto e^{-S_{loc}(\varphi_{i,j}, \mathbf{v}_{i,j})}$$
(1)

where, $\mathbf{v}_{i,j} = (\lambda, m^2, \kappa_{i,j})$ is the condition vector for the distribution. Eq. (1) is the target distribution which we model using generative approach. **Proposal:** We model the proposal distribution using GMM with K Gaussian components.

$$q(\varphi_{i,j}|\mathbf{v}_{i,j};\theta) = \sum_{k=1}^{K} \pi_k(\mathbf{v}_{i,j};\theta_k) \mathcal{N}(\varphi_{i,j}|\mu_k(\mathbf{v}_{i,j};\theta_k), \sigma_k(\mathbf{v}_{i,j};\theta_k))$$

where, μ_k , σ_k , π_k are the mean, standard deviation and mixing coefficient of the k^{th} Gaussian distribution, which are estimated using NNs with parameters $\theta = \{\theta_k\}_{k=1}^K$.

イロト イポト イヨト イヨト

Training: PBMG-Phi4

Training data:

We generate samples of $\mathbf{v}_{i,j}$ from $p_v(\mathbf{v}_{i,j})$ as the training set. Here, $p_v(\mathbf{v}_{i,j}) = \text{Unif}([2.5, 15] \times [-8, 0] \times [-20, 20])$ as $\lambda \in [2.5, 15]$, $m^2 \in [-8, 0]$ and $\kappa_{i,j} \in [-20, 20]$ are the parameter ranges chosen for training.

• Loss Function The training is done by minimizing the KL divergence between the proposal and the target :

$$\mathcal{L} \approx \frac{1}{n} \sum_{r=1}^{n} \left[\frac{1}{N} \sum_{k=1}^{N} [\log q((\varphi_{i,j})_k | (\mathbf{v}_{i,j})_r;) - \log p((\varphi_{i,j})_k | (\mathbf{v}_{i,j})_r)] + \|\pi((\mathbf{v}_{i,j})_r;\theta\|] \right]$$
(2)

PBMG Method: XY Model

The local Hamiltonian for $\varphi_{i,j}$ is

$$H(\varphi_{i,j}) = -\left[\cos(\varphi_{i,j} - \varphi_{i+1,j}) + \cos(\varphi_{i,j} - \varphi_{i,j+1}) + \cos(\varphi_{i,j} - \varphi_{i-1,j}) + \cos(\varphi_{i,j} - \varphi_{i,j-1})\right]$$
(3)

$$p(\varphi_{i,j}|\mathbf{v}_{i,j}) \propto e^{-\frac{H(\varphi_{i,j})}{T}}.$$
(4)

イロト イポト イヨト イヨト

Here, $\mathbf{v}_{i,j} = (\varphi_{i+1,j}, \varphi_{i,j+1}, \varphi_{i-1,j}, \varphi_{i,j-1}, T).$

We use NF to model the proposal distribution $q(\varphi_{i,j}|\mathbf{v}_{i,j};\theta)$. $p_Z(z|\mathbf{v}_{i,j};\theta_B)$ is the base distribution and $f(z;\theta_R)$ is the invertible transformation used in the NF. Here, $\theta = \{\theta_B, \theta_R\}$.

Using the change of variables formula,

$$q(\varphi_{i,j}|\mathbf{v}_{i,j};\theta) = p_Z \left(f^{-1}(\varphi_{i,j};\theta_R) | \mathbf{v}_{i,j};\theta_B \right) \\ \left| \det \left(\frac{\partial f^{-1}(\varphi_{i,j};\theta_R)}{\partial \varphi_{i,j}} \right) \right|$$
(5)

Here, we use Rational Quadratic Splines (RQS) as the transform f. The parameters of the RQS flow are learned through neural networks.

4 日 2 4 個 2 4 三 2 4 三 2 5 1

Loss Function: PBMG-XY

The base distribution of RQS flow is chosen to be uniform, over a learnable interval w_{int} .

We use four different NNs (NN_i , i = 1, 2, 3, 4) to learn these parameters. The Loss function:

$$\mathcal{L} \approx \frac{1}{n} \cdot \frac{1}{N} \sum_{r=1}^{n} \sum_{k=1}^{N} [\log p_Z(z_k | (\mathbf{v}_{i,j})_r; \theta_B) + \log |\det J_f(z_k | (\mathbf{v}_{i,j})_r; \theta_R)|^{-1} - \log p \left(f(z_k; \theta_R) | (\mathbf{v}_{i,j})_r\right)].$$

Here, $p_v(\mathbf{v}_{i,j}) = \text{Unif}([0, 2\pi]^4 \times [0.13, 2.05])$ as the first four components of $\mathbf{v}_{i,j}$ belong to $[0, 2\pi]$ and $T \in [0.13, 2.05]$ is the training range of T.

Results: PBMG vs Heatbath for Phi4 Theory

The trained models are used as proposal for Heatbath sampling. Acceptance rate: The acceptance rate R on lattice with lattice sites N_{tot} can be calculated as:

Figure: Acceptance rate of Heatbath vs PBMG for different action parameter values.

Ankur Singha (TU Berlin)

Results: PBMG vs Heatbath XY model

We compare PBMG XY model against Heatbath with uniform distribution as proposal:

Figure: Acceptance rate of Heatbath vs PBMG for different Temperatures.

For both Phi4 and XY model we consider same training time for the acceptance rate. For XY it is around 90% which further improves with training time.

Ankur Singha (TU Berlin)

41st Lattice Conference, Liverpool, UK.

The observables such as energy and magnetization are compared using Earth Mover Distance (EMD).

Metric	Lattice size	$\mathrm{PBMG}\text{-}\phi^4$	Metric	Lattice size	F
EMD ↓	8x8	0.0008		8x8	
	16x16	0.0030	EMD	16x16	
	32x32	0.0085	$EMD \downarrow$	32x32	
	64x64	0.0081		64x64	
					_

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Summary and Future Outlook:

- We propose a method to train a conditional generative to generate proposal for Heatbath.
- Its a conditional model both on lattice site (not restricted to local sites) and action parameters.
- The model has high acceptance rate and can be used across the wide range of action parameter.
- **Multiscale sampling**: A single model can be utilized for all levels of multi-scale sampling where effective actions need different proposals for Heatbath sampling.
- **Guage Thoery**: We are exploring sampling of Gauge theory using PBMG also theories which cannot be sampled by usual Heatbath.

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで