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Introduction

Generative Models for Sampling Lattices
Albergo et al. (2019): Normalizing flows for Phi4 theory.
Nicoli et al. (2020, 2021): Used NF for thermodynamic observables and mode
collapse in Phi4 theory.
Kanwar et al. (2020), Boyda et al. (2020): Applied forward KL optimization
of NF for U(1), SU(N) gauge theories.
Singha et al. (2022, 2023) : Conditional Normalizing flows for LFT.
Gerdes et al. (2022, 2023): Continuous Normalizing flows for LFT.
Caselle et al. (2022): Stochastic Normalizing flows for LFT.
Wang et al. (2023): Diffusion model for LFT.
Abbott et al. (2023, 2024): Sampled QCD fields with gauge-equivariant flow
models.

Exploring the Heat-Bath Algorithm
Motivation: Generative models are promising but complex. Heat-Bath
offers a simpler, exact method.
Objective: Investigate Heat-Bath algorithm’s performance, especially
construct a good proposal.
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Introduction: Gibbs Sampling & Heat-Bath

Objective: A Markov Chain Monte Carlo (MCMC) algorithm used to sample
from a joint probability distribution P (x1, x2, . . . , xn).
Steps in Gibbs Sampling:

1 Initialization: Start with an initial state (x(0)1 , x
(0)
2 , . . . , x

(0)
n ).

2 Iterative Sampling:

x
(t+1)
1 ∼ P (x1 | x(t)2 , x

(t)
3 , . . . , x(t)n )

x
(t+1)
2 ∼ P (x2 | x(t+1)

1 , x
(t)
3 , . . . , x(t)n )

...

x(t+1)
n ∼ P (xn | x(t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
n−1 )

3 This is a sequential single site update from the conditional distribution.
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Gibbs sampling & Heat-Bath

In lattice theories the number of conditions can be few only, like local theories,

P (x1 | x(t)2 , x
(t)
3 , . . . , x(t)n ) = P (x1 | x(t)2 , x

(t)
3 , x

(t)
4 , x

(t)
5 )

If the conditional distribution can be factorise further, then parallel
sampling is possible: Heatbath.
This makes Heat-bath as faster sampling method.
Sampling is done at two steps:

X
(t)
odd ∼ P (Xodd|Xeven)

X(t+1)
even ∼ P (Xt

even|Xodd)
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Heat-Bath: Discrete Case
Ising: Probabilities for state si = +1 and si = −1,

P (si = +1) =
eβhi

eβhi + e−βhi
, P (si = −1) =

e−βhi

eβhi + e−βhi

Draw a random number u from a uniform distribution U(0, 1).
Set si = +1 if u < P (si = +1), otherwise set si = −1.

q state spins:Probabilities

P (si = k) =
eβJnk∑q
l=1 e

βJnl

Sample si from this distribution:
Draw a random number u from a uniform distribution U(0, 1).
Use cumulative probabilities to determine the state k:

k = smallest integer such that
k∑

m=1

P (si = m) > u
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Heatbath: Continuous Case

Probability Distribution:

P (φx) ∝ exp(−S(φx))

Cumulative Distribution Function:

F (φx) =

∫ φx

−∞
P (φ′) dφ′

Numerical Integration:
Evaluating the CDF F (φx) non-trivial, often requires numerical methods.
Thus need looks alternate methods such as rejection sampling.
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Heat-Bath: Rejection Sampling

Action for Scalar LFT:
The local action is given by:

Sloc(φi,j , λ,m
2, κi,j) =

(
m2 + 4

)
φ2
i,j + λφ4

i,j − 2φi,jκi,j

Where:
κi,j = φi+1,j + φi,j+1 + φi−1,j + φi,j−1

λ andm are theory parameters.
Target Distribution:

The normalized target distribution is:

p(φi,j) =
1

Z
exp

(
−Sloc(φi,j , λ,m

2, κi,j)
)

This represents the distribution we want to sample from.
Edwards, R. G., et al. Nuclear Physics B 10.1016/0550-3213(91)90357-4
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Heat-Bath Algorithm: Rejection Sampling

Proposal Distribution:
For Gaussian proposal distribution:

g(φ) =
1√
2πσ2

exp
(
−(φ− µ)2

2σ2

)
where,

µ =
κi,j

m2 + 4
, σ2 =

1

2(m2 + 4)

Heat-Bath Algorithm:
1 For each site (i, j):

Calculate µ =
κi,j

m2+4 and σ
2 = 1

2(m2+4) from the Gaussian approximation.
Draw a candidate φi,j from the Gaussian distribution.
Accept the candidate with probability:

exp
(
−λφ4

)
If rejected, draw a new candidate and repeat until accepted.
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Challenges with Continuous Degrees of Freedom

Challenges in Heatbath with rejection sampling

The primary challenge with this rejection method is finding an effective

proposal distribution.

A poor proposal distribution can result in a high rejection rate, which increases

the overall simulation cost.

The proposal distribution needs to be adjusted for different regions of the action

parameters.

Occasionally, the same type of proposal distribution may not be effective for

simulations in parameter regimes where the target distribution has multiple

modes.
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PBMG Method: Phi4

Target: The conditional distribution of the lattice site (i, j) can be written as

p
(
φi,j |λ,m2, κi,j) = p

(
φi,j |vi,j) ∝ e−Sloc(φi,j ,vi,j) (1)

where, vi,j = (λ,m2, κi,j) is the condition vector for the distribution. Eq. (1) is the
target distribution which we model using generative approach.
Proposal: We model the proposal distribution using GMM withK Gaussian
components.

q(φi,j |vi,j ; θ) =

K∑
k=1

πk(vi,j ; θk)N (φi,j |µk(vi,j ; θk), σk(vi,j ; θk))

where, µk, σk, πk are the mean, standard deviation and mixing coefficient of the kth
Gaussian distribution, which are estimated using NNs with parameters θ = {θk}Kk=1.
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Training: PBMG-Phi4

Training data:
We generate samples of vi,j from pv(vi,j) as the training set. Here,
pv(vi,j) = Unif([2.5, 15]× [−8, 0]× [−20, 20]) as λ ∈ [2.5, 15],
m2 ∈ [−8, 0] and κi,j ∈ [−20, 20] are the parameter ranges chosen for
training.
Loss Function The training is done by minimizing the KL divergence
between the proposal and the target :

L ≈ 1

n

n∑
r=1

[
1

N

N∑
k=1

[log q((φi,j)k|(vi,j)r; )

− log p
(
(φi,j)k|(vi,j)r)] + ∥π((vi,j)r; θ∥

]
(2)
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PBMG Method: XY Model

The local Hamiltonian for φi,j is

H(φi,j) =−
[

cos(φi,j − φi+1,j) + cos(φi,j − φi,j+1)

+ cos(φi,j − φi−1,j) + cos(φi,j − φi,j−1)
]

(3)

p(φi,j |vi,j) ∝ e−
H(φi,j)

T . (4)

Here, vi,j = (φi+1,j , φi,j+1, φi−1,j , φi,j−1, T ).
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Training: PBMG-XY

We use NF to model the proposal distribution q(φi,j |vi,j ; θ). pZ(z|vi,j ; θB) is
the base distribution and f(z; θR) is the invertible transformation used in the
NF. Here, θ = {θB, θR}.
Using the change of variables formula,

q(φi,j |vi,j ; θ) =pZ
(
f−1(φi,j ; θR)|vi,j ; θB

)∣∣∣∣det
(
∂f−1(φi,j ; θR)

∂φi,j

)∣∣∣∣ (5)

Here, we use Rational Quadratic Splines (RQS) as the transform f .
The parameters of the RQS flow are learned through neural networks.
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Loss Function: PBMG-XY

The base distribution of RQS flow is chosen to be uniform, over a learnable
interval wint.
We use four different NNs (NNi, i = 1, 2, 3, 4) to learn these parameters.
The Loss function:

L ≈ 1

n
· 1

N

n∑
r=1

N∑
k=1

[log pZ(zk|(vi,j)r; θB)+

log | det Jf (zk|(vi,j)r; θR)|−1 − log p (f(zk; θR)|(vi,j)r)].

Here, pv(vi,j) = Unif([0, 2π]4 × [0.13, 2.05]) as the first four components of
vi,j belong to [0, 2π] and T ∈ [0.13, 2.05] is the training range of T .
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Results: PBMG vs Heatbath for Phi4 Theory

The trained models are used as proposal for Heatbath sampling.
Acceptance rate: The acceptance rate R on lattice with lattice sites Ntot can
be calculated as:

R =
Ntot

Total attempts
=

Ntot∑N
i=1 n

(k)
i

Figure: Acceptance rate of Heatbath vs PBMG for different action parameter values.
Ankur Singha (TU Berlin) 41st Lattice Conference, Liverpool, UK. 15 / 19



Results: PBMG vs Heatbath XY model

We compare PBMG XY model against Heatbath with uniform distribution as
proposal:

Figure: Acceptance rate of Heatbath vs PBMG for different Temperatures.

For both Phi4 and XY model we consider same training time for the acceptance rate.
For XY it is around 90% which further improves with training time.
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Results: Observables

The observables such as energy and magnetization are compared using Earth Mover
Distance (EMD).
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Summary and Future Outlook:

We propose a method to train a conditional generative to generate
proposal for Heatbath.
Its a conditional model both on lattice site (not restricted to local sites)
and action parameters.
The model has high acceptance rate and can be used across the wide
range of action parameter.
Multiscale sampling: A single model can be utilized for all levels of
multi-scale sampling where effective actions need different proposals for
Heatbath sampling.
Guage Thoery: We are exploring sampling of Gauge theory using
PBMG also theories which cannot be sampled by usual Heatbath.

Ankur Singha (TU Berlin) 41st Lattice Conference, Liverpool, UK. 18 / 19



Thank You!


