
Developments of CASK: Gauge Symmetric Transformer

akio_at_yukawa.kyoto-u.ac.jp

Akio Tomiya (Lecturer/Jr Associate prof) 
Tokyo Woman's Christian University 

(I moved in this April)

Lattice 2024
Jul 29 (Mon), 2024, 11:55 AM
Algorithms and artificial intelligence

https://conference.ippp.dur.ac.uk/event/1265/contributions/7581/

H. Ohno Y. Nagai

Two related talks in Lattice2024

2

B. J. Choi

U. of Tsukuba

J. Takahashi

Meteorological College

Using idea based on B. Yoon+ 1807.05971, 
we estimate higher order of 1/D using ML.

Impact of bias correction will be discussed

Reconstruction of spectral function

using machine learning (sparse modeling)

Other than my talk

H. Ohno H. Ohno

Algorithms and artificial intelligence
Jul 29 (Mon), 2024, 11:15  AM

Algorithms and artificial intelligence
Jul 29 (Mon), 2024, 3:35  PM

AT AT

ML for LQCD is needed
• Neural networks

• Data processing techniques mainly for 2d
image (a picture = pixels = a set of real #)

• Neural network helps data processing 
e.g. AlphaFold3

• Lattice QCD requires numerical effort 
but is more complicated than pictures

• 4 dimension

• Non-abelian gauge d.o.f. and symmetry

• Fermions (Fermi-Dirac statistics)

• Exactness of algorithm is necessary

• Q. How can we deal with neural nets?

3

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

4

What is the neural networks?
Attempts to gauge symmetry and fermions

Akio Tomiya

In my paper for fields generation using ML (1712.03893),

2310.13222, AT+: Global symmetric transformer for fermion-spin system

2103.11965, AT+ Gauge covariant self-learning HMC for 4d LQCD

2010.11900, AT+: Gauge invariant self-learning MC for 4d LQCD

This work, AT+: Gauge symmetric transformer for 4d LQCD

We have created several architectures:

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402

TLDR; Covariant NN = adaptive gradient flow = adaptive stout

7,8 years! 😯

TLDR; Tuning of coupling (linear model), and accept/reject

TLDR; Transformer for spin-fermion system, global symmetry

https://arxiv.org/abs/2305.02402

5

Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)
2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+

This talk

(I want to mimic

this by NN)

1. 2.

3.

Overview/outline
Gauge covariant transformer for LQCD

6

Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)

This talk

(I want to mimic

this by NN)

1. 2.

3.

2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+

Overview/outline
Gauge covariant transformer for LQCD

7

Gauge covariant neural network
= trainable smearing (= residual flow)

Akio Tomiya

AT Y. Nagai arXiv: 2103.11965

R Abbott+ 2401.10874

Stout-type covariant neural network

Uμ(n) → Usmr
μ (n) = e∑i ρiLi[U]Uμ(n)

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402

Trainable parameters
Training done by the back-prop

(extension to the stout paper [1])

[1] C. Morningster+ 2003

Stout kernel

This neural network layer makes maps between
gauge configurations with covariance! (trainable
stout for various purpose)

Loops projected on Lie algebra

+
fat linkthin link

(with trainable parameters)

https://arxiv.org/abs/2305.02402

8

Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)

This talk

(I want to mimic

this by NN)

1. 2.

3.

2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+

Overview/outline
Gauge covariant transformer for LQCD

Akio Tomiya

9

Convolutional Neural network have been good job but local
Equivariance and convolution

Convolutional neural layers in neural networks keep translational symmetry,
it can be generalized to any continuous/discrete symmetry in the theory. It helps generalization.

However, 1 step of convolutional layer can pick up only local correlation
and representability of neural networks is limited.
Global correlations are important.
How can we overcome these difficulties?

Distant correlations here can be captured  
by 3 steps of convolutional operation

(Repetition of local operation)

e.g.
1d Input image

conv ~ neural net with n-th nearest neighbor connections (local)

conv

conv

Layer

10

Attention layer used in Transformers (GPT, Bard)

Akio TomiyaTransformer and Attention
arXiv:1706.03762

Attention layer (in transformer model) has been 
 introduced in a paper titled

“Attention is all you need” (1706.03762)

State of the art architecture of language

processing.

Attention layer is essential.

11

Attention layer can capture non-local correlations

Akio TomiyaTransformer and Attention

I am Akio Tomiya living in Japan, who studies machine learning and physics

Modifier in language can be non-local

In physics terminology, this is non local correlation.

The attention layer enables us to treat non-local correlation 
 with a neural net!

arXiv:1706.03762

Eg.

X =
I

am
Akio

⋮

WQX

WKX

WVX

M = WQX(WKX)⊤

ReLU(M)WVX

Self-Attention

Weighted
Block-
spin
Transf.
(Trainable)

Add & normalization

Skip connection

Non-local product
(Non-local  

correlation)
X′

Array of

word vectors

Word~vector

X: matrix These can be repeated

Simplified version of Attention/Transformer

(This example is single-head)

S′ =

12

Symmetric Attention layers (parametrized block spin trf)

Akio TomiyaTransformer for spin system

S =

Self-Attention block

Add & Norm

Self-Attention block

Add & Norm

S

SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M)WVS

Self-Attention block

𝒩(Si) = Si/∥Si∥

S(l) ≡ 𝒩 (S(l−1) + SA)

Smeared fields
Rot. equivariant
Trsl. equivariant
Skip connection
Normalized!

arXiv: 2306.11527.

position-wise

Smearing (BST)
Rot. equivariant
Trsl. equivariant
trainable!

Attention = Correlators

How can we make this gauge covariant?

Gauge covariant transformer
(CASK)

13

A. Tomiya, H. Ohno, Y. Nagai

Work in progress

14

Overview/outline
Gauge covariant transformer for LQCD

Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)

This talk

(I want to mimic

this by NN)

1. 2.

3.

2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+

15

Gauge covariant transformer: CASK
CASK?

Akio Tomiya

Cask stout 
(Whisky Barrel-Aged Stout beer)

= stout beer in a cask

https://loughgillbrewery.com/products/cask-irish-coffee-stout

16

Stout kernel

Akio Tomiya

https://loughgillbrewery.com/products/cask-irish-coffee-stout

It is named in an obvious reason😜

Covariant attention block
CASK = Covariant Attention  

with Stout Kernel

Cask stout 
(Whisky Barrel-Aged Stout beer)

= stout beer in a cask

Gauge covariant transformer: CASK

17

Gauge covariant transformer: CASK
Collection of ML/LQCD

Akio Tomiya

Stout & Flow

(nothing. 
mean field?)

・Demon method (inverse MC)

・Hopping parameter

CNN/Equivariant NN

Transformer - GPT

Linear regression

Lattice ML(Framework)

arXiv1508.04986 AT+

Gauge covariant net

・Global symmetric 
Transformer

Gauge inv. SLMC

Trivializing with SD eq a la Luscher

ML/Lattice
Phys. Rev. D 107, 054501 AT+

2021 AT+

・CASK (this talk)

2212.11387 AT+

https://loughgillbrewery.com/products/cask-irish-coffee-stout

2306.11527 AT+

18

Gauge covariant transformer: CASK
Idea: Attention must be invariant

Akio Tomiya

Attention matrix in transformer ~ correlation function (with block-spin transformed spin)

-> we replace it with “correlation function for links” in a covariant way

ji

aij ∼ (R ⃗S)⊤
i R ⃗S j = ⃗S ⊤

i
⃗S j

ji

aiμ,jμ ∼ Re tr Uμ(i)U†
μ(j)

not invariant

(cannot be used)

invariant under 
local SU(N)

ji

Vinvariant

under global O(3)

aiμ,jμ ∼ Re tr Vμ(i)U†
μ(j)

U U†

U†

aij ∼ ⃗S i ⋅ ⃗S j

In total, output is covariant

(with activation)

(with activation)

In total, output is covariant

19

Gauge covariant transformer: CASK
Structure of gauge symmetric attention using stout

Akio Tomiya

2. Construct attention matrix (Rectangular Wilson loop) using , -> UQ UK a(*,*)

3. Construct “stout smeared” [1] link with weight and , (as matrix mult)a(*,*) UV U

1. 3 types of (trainable) stout [1] -> , , (they have different weights)UQ UK UV

Procedure in three steps:

Uout = exp[a(*,*)L[UV]]Uin

Loop operator  
projected on Lie algebra

VQ UK†

Uα = exp[ραL[Uin]]Uin α = Q, K, V

Loop operator  
projected on Lie algebra0. : Input configuration/LinksU in

∼ a(*,*)

weights

cf. sparse attention, star attention
(with activation)

Covariant

(This can be extend to have multi-head trivially)

[1] 2021 AT+

20

Physically symmetric Attention layer for LQCD

Akio TomiyaGauge covariant transformer: CASK

Attention layer can capture global correlation
Equivariance reduces data demands for training

Equivariance Gauge? Capturable
correlation

Data
demmands Applications

Convolution
(∈ equivariant

layers)
Yes 👍 Yes 👍 Local 😲 Low 👍

VAE, GAN 
Normalizing flow 

SLHMC  
2103.11965 AT+

Standard 
Attention layer 

arXiv:1706.03762
No 😲 No 😲 Global 👍 Huge 😲

ChatGPT

GEMINI

Vision Transformer

 Equivariant
attention for

spin 
layer

Yes 👍 No 😲 Global 👍 ?
Kondo system

(2310.13222 AT+

2306.11527 AT+)

 Equivariant
attention for

gauge 
layer

Yes 👍 Yes 👍 Global 👍 ? This work

21

Gauge covariant transformer: CASK
Simulation parameter

Akio Tomiya

Construct effective  
action using operators

with Ueff

Ueff

U

• Self-learning HMC (1909.02255, 2021 AT+),  
an exact algorithm

• Exact Metropolis test and MD with effective action

• Target : , dynamical staggered fermion,
Nf=2, , SU(2),

• Effective action in MD ()

• Same gauge action

• dynamical staggered fermion, Nf=2

• CASK with plaquette covariant kernel

• Attention = 7-links rect staple (=3 plaquette)

• links are replaced by in

• “Adaptively reweighted HMC”

S m = 0.3
L4 = 44 β = 2.7

Seff

meff = 0.4

U Ueff Dstag

22

Gauge covariant transformer: CASK
Loss = difference of action

Akio Tomiya

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000

STOUT
CASK 2
CASK 3
CASK 4

|S
f(m

=0
.3
)-S

fe
ff (
m
=0
.4
)|

epoch

Preliminary
Loss w.r.t. training

• Loss decreases along
with the training steps

• it works as same as the
stout (covariant net)

• Gain?

= MC steps

23

Gauge covariant transformer: CASK
Attention blocks improve acceptance

Akio Tomiya

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

STOUT
CASK 2
CASK 3
CASK 4

Ac
ce
pt
an
ce

ra
tio

epoch

Preliminary
CASK

Stout

(covariant net)

Acceptance rate w.r.t. training

• In terms of acceptance,
CASK has gain

• It is still improving

= MC steps

24

Summary
Transformer NN for Lattice QCD

Akio Tomiya

24

• Gauge covariant attention layer (CASK) has been developed

• Test case for 4d SU(N) with dynamical fermions in tiny lattice

• it is implemented with

• Training is done using back-prop for gauge fields

• It works as covariant Neural network and it has gain 😀

• It is still working in progress

• Scaling law for model size (and system size?)

• Removing pseudo-fermions? (as same as the spin 2306.11527 AT+)

• Optimization of architecture

• Sparse-attention/star-attention/etc

• Bigger model? Applications (contour deform, flow, control variates)?
KAKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Thanks!

25

26

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

STOUT
CASK 2
CASK 3
CASK 4

Pl
aq
ue
tte

epoch

• CASK gives
consistent results
with other gauge
cov net (as
expected)

Configuration generation for 2d scalar

Akio Tomiya

27

Restricted Boltzmann machine + HMC: 2d scalar

GAN (Generative adversarial network): 2d scalar

Flow based model: 2d scalar, pure U(1), pure SU(N)
Mimicking a trvializing map using a neural net which is reversible and has tractable Jacobian.

Exact algorithm, no dynamical fermions. SU(N) is treated with diagonalization.

Self-learning Monte Carlo (SLMC) for lattice QCD
Non-abelian gauge theory with dynamical fermion in 4d

Using gauge invariant action with linear regression

Exact. Costly (Diagonalize Dirac operator)

Results look OK. No proof of exactness

The first challenge, machine learning + configuration generation. Wrong at critical pt. Not exact.
A. Tanaka, AT 2017

J. Pawlowski+ 2018

G. Endrodi+ 2018

Applications
Configuration generation with machine learning is developing

Gauge covariant neural network and full QCD simulation

arxiv 2010.11900 Y. Nagai, AT, A. Tanaka

Self-learning Hybrid Monte Carlo for lattice QCD (SLHMC, This talk)
arxiv 2103.11965 Y. Nagai, AT

2019, 2020, 2021

Non-abelian gauge theory with dynamical fermion in 4d

Using covariant neural network to parametrize the gauge invariant action

Exact

Dynamical fermions, 4 Dimension

Exact algorithm, gauge symmetry

L2HMC for 2d U(1) (Sam Foreman+ 2021)

28

Problems to solve

Akio Tomiya

Gauge covariant neural network and full QCD simulation

Application for the staggered in 4d

Our neural network enables us to parametrize gauge symmetric action

covariant way.

arXiv: 2103.11965

SNN[U] = Splaq [UNN
μ (n)[U]]

SNN[U] = Sstag [UNN
μ (n)[U]]

Test of our neural network?
Can we mimic a different Dirac operator using neural net?

e.g.

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{
Q. Simulations with approximated action can be exact?

 -> Yes! with SLHMC (Self-learning HMC)

Artificial example for HMC:

29

SLHMC for gauge system with dynamical fermions

Akio Tomiya

Gauge covariant neural network and full QCD simulation

SLHMC = Exact algorithm with ML

HMC U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use

HHMC =
1
2 ∑ π2 + Sg + Sf

SLHMC U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965 and reference therein

30

Lattice setup and question

Akio Tomiya

Gauge covariant neural network and full QCD simulation

Two color QCD (plaquette + staggered)

Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Plaquette, Polyakov loop, Chiral condensate ⟨ψ ψ⟩

Application for the staggered in 4d

Full scratch,

fully written in Julia lang.

Observables

(But we added some functions on the public version)

Parameter

Target

Code

Action in MD
(for SLHMC) Sθ[U] = Sg[U] + Sf[ϕ, UNN

θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3], For Metropolis Test

AT+ (in prep)

SLHMC, HMC (comparison)Algorithms

arXiv: 2103.11965

What is ?

31

We made a public code in Julia Language

Akio Tomiya

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover

Domain-wall (experimental) + Measurements

3 steps in 5 min

Lattice QCD code

Gauge covariant neural network and full QCD simulation

AT & Y. Nagai in prep

1. Download Julia binary

2. Add the package through Julia package manager

3. Execute!

1.Open source scientific language (Just in time compiler)

2.Fast as C/Fortran (sometime, faster)

3.Productive as Python

4.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)

5.Supercomputers support Julia

https://github.com/akio-tomiya/LatticeQCD.jl

: Laptop/desktop/PC-cluster/Jupyter (Google colab)(Official package)

https://github.com/akio-tomiya/LatticeQCD.jl

Akio Tomiya

32

Details (skip)
Network: trainable stout (plaq+poly)

Gauge covariant neural network and full QCD simulation

Lθ[U] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Structure of NN

U(l+1)
μ (n) = exp(Q(l)

μ (n))U(l)
μ (n)

Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

UNN
μ (n)[U] = U(2)

μ (n)[U(1)
μ (n)[Uμ(n)]] 2- layered stout

All is weightρ
(Polyakov loop+plaq
in the stout-type)

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)

2.Perform SLHMC with fixed parameter

Neural network
Parametrized action:

Action for MD is built by

gauge covariant NN

with 6 trainable parameters

TA: Traceless, anti-hermitian operation

 meas an loop operatorO

arXiv: 2103.11965

Invariant under,

rot, transl, gauge trf.

Akio Tomiya

33

Details (skip)
Results: Loss decreases along with the training

Gauge covariant neural network and full QCD simulation

Lθ[U] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Prior HMC run (training)

C: one U removed Ω
Λ: A polynomial of U. (Same object in stout)

Training history

We perform SLHMC with these values!

arXiv: 2103.11965

Ω: sum of un-traced loops

Intuitively, e^(-L) is understood as

Boltzmann weight or reweighting factor.

Without training, e^(-L)<< 1,

this means that candidate with approximated action

never accept.

After training, e^(-L) ~1, and we get

practical acceptance rate!

34

Equivariance and convolution
Knowledge ∋ Convolution layer = trainable filter, Equivariant

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

Convolution layer

Laplacian filter

Edge detection

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

(Discretization of)∂2

Translational operation is commutable with filtering (equivariant)

shift to right shift to right

* =
shift to right shift to right

Translational operation is commutable with convolutional neurons (equivariant)

w11 w12 w13

w21 w22 w23

w31 w32 w33

Trainable filter

This can be any filter which helps feature extraction (minimizing loss)
Equivariance reduces data demands. Ensuring symmetry (plausible Inference)
Many of convolution are needed to capture global structures

35

Akio Tomiya
Machine learning for theoretical physics

Detecting phase transition

Quantum computing

for quantum field theory

https://cometscome.github.io/DLAP2020/

Kakenhi and others
Leader of proj A01 Transformative Research Areas, Fugaku

https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ

Others:
Supervision of Shin-Kamen Rider

The 29th Outstanding Paper Award of the Physical Society of Japan 
14th Particle Physics Medal: Young Scientist Award

+quantum computer

Organizing “Deep Learning and physics”

I am a particle physicist, working on lattice QCD.

I want to apply machine learning on lattice QCD.

What am I?

My papers

Biography
2006-2010 : University of Hyogo (Superconductor)

2015 : PhD in Osaka university (Particle phys)

2015 - 2018 : Postdoc in Wuhan (China)

2018 - 2021 : SPDR in Riken/BNL (US)

2021 - 2024 : Assistant prof. in IPUT Osaka (ML/AI) 
2021 - 2024 : ML(ML/AI)

36

SLHMC for gauge system with dynamical fermions

Akio TomiyaSLHMC = Exact algorithm with ML

HMC U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use

HHMC =
1
2 ∑ π2 + Sg + Sf

Self
Learning
HMC

U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965  
and reference therein SLHMC works as an adaptive reweighting!

Gauge covariant neural network can mimics gauge invariant functions
-> It can be used in simulation? -> Self learning HMC!

37

Problems to solve

Akio TomiyaApplication for the staggered in 4d
arXiv: 2103.11965

Mimic different actions:

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action
(Metropolis) S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{

(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

SLHMC works as an adaptive reweighting! 37

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Self
Learning
HMC

Akio Tomiya

38

Application for the staggered in 4d
Results are consistent with each other

Expectation value

arXiv: 2103.11965

Implemented by

Akio Tomiya

39

Introduction
Configuration generation with machine learning is developing
Year Group ML Dim. Theory Gauge sym Exact? Fermion? Lattice2021/ref
2017 AT+ RBM  

+ HMC 2d Scalar - No No arXiv: 1712.03893

2018 K. Zhou+ GAN 2d Scalar - No No arXiv: 1810.12879

2018 J. Pawlowski + GAN

+HMC 2d Scalar - Yes? No arXiv: 1811.03533

2019 MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072

2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413

2020 MIT+ Flow 2d SU(N) Equivariant Yes No arXiv: 2008.05456

2020 AT+ SLMC 4d SU(N) Invariant Yes Partially arXiv: 2010.11900

2021 M. Medvidovic´+ A-NICE 2d Scalar - No No arXiv: 2012.01442

2021 S. Foreman L2HMC 2d U(1) Yes Yes No
2021 AT+ SLHMC 4d QCD Covariant Yes YES!
2021 L. Del

Debbio+ Flow 2d Scalar, O(N) - Yes No
2021 MIT+ Flow 2d Yukawa - Yes Yes
2021 S. Foreman,

AT+
Flowed 
HMC

2d U(1) Equivariant Yes No but compatible arXiv: 2112.01586

2021 XY Jing Neural
net

2d U(1) Equivariant Yes No
2022 J. Finkenrath Flow 2d U(1)
 Equivariant Yes Yes (diagonalization) arxiv: 2201.02216

2022 MIT+ Flow 2d U(1) Equivariant Yes Yes (diagonalization) arXiv:2202.11712
＋…

This is not complete list. Related to lattice field theory and biased

40

Attention layer can capture non-local correlations

Akio TomiyaTransformer and Attention

I am Akio Tomiya living in Japan, who studies machine learning and physics

Modifier in language can be non-local

In physics terminology, this is non local correlation.

The attention layer enables us to treat non-local correlation 
 with a neural net!

arXiv:1706.03762

Eg.

Q = WQS K = WKS V = WVS

M = KQ⊤

SA = σsm(M)WVS

Self attention
Modified Sentence
(Vectors, field conf)

Sentence
(Vectors, field conf)

Calculation of Attention score
~ a set of 2pt functions for effective operators

~BST ~BST ~BST

~ Weighted eff. ops.

Schematic picture (in physics terminology)

“Key” “Value”“Queries”

: param
: param
: param

WQ

WK

WVSentence in

and sentence out

41

Attention layer makes effective spin field

Akio TomiyaSelf-learning Monte-Carlo

S =

S′ Heff = tr[S′ (JS′)⊤]

Self-Attention block

Add & Norm

Self-Attention block

Add & Norm

Self-Attention block

Add & Norm

Metropolis

with Heff

Metropolis

-Hastings

with H& Heff

{S} {S} {S}{S} {S}
SLMC

arXiv: 2306.11527.

Next, we explain

how can we realize the effective model

with Attention layers

42

Equivariant Attention layer

Akio TomiyaSelf-learning Monte-Carlo

S =

S′ Heff = tr[S′ (JS′)⊤]

Self-Attention block

Add & Norm

Self-Attention block

Add & Norm

Self-Attention block

Add & Norm

S

SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M)WVS

Self-Attention block

𝒩(Si) = Si/∥Si∥

S(l) ≡ 𝒩 (S(l−1) + SelfAttentionspin
θ(l) (S(l−1)))

arXiv: 2306.11527.

Smeared fields

43

Previous work

Akio TomiyaSelf-learning Monte-Carlo

HLinear
eff = − ∑

⟨i,j⟩n

Jeff
n Si ⋅ Sj + E0

H = − t ∑
α,⟨i,j⟩

(̂c†
iα ̂cjα + h . c.) +

J
2 ∑

i

Si ⋅ ̂σi − μ∑
α,i

̂c†
iα ̂ciα,

Target system: Classical Heisenberg spin + Fermion on 2d latticeSi

Heff = − ∑
⟨i,j⟩n

Jeff
n SNN

i ⋅ SNN
j + E0

Brute force effective model:
n nearest neighbor

44

Equivariant under spin-rotation & translation

Akio TomiyaSelf-learning Monte-Carlo

S

SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M)WVS

Self-Attention block

S = (S⊤
1 S⊤

2 S⊤
3 S⊤

4)⊤

S⊤
i = (s1

i s2
i s3

i)⊤

|Si | = (s1
i)2 + (s2

i)2 + (s3
i)2 = 1

G ≡ S⊤S =

S⊤
1 S1 S⊤

1 S2 S⊤
1 S3 S⊤

1 S4

S⊤
2 S1 S⊤

2 S2 S⊤
2 S3 S⊤

2 S4

S⊤
3 S1 S⊤

3 S2 S⊤
3 S3 S⊤

3 S4

S⊤
4 S1 S⊤

4 S2 S⊤
4 S3 S⊤

4 S4

Gram matrix

Spin rotation for Si keeps G invariant. 
G is a matrix for coordinate but not for spin.

arXiv: 2306.11527.

If an effective hamiltonian is a function
Gram matrix, it has rotational symmetry

45

Equivariant under spin-rotation & translation

Akio TomiyaSelf-learning Monte-Carlo

S

SA

WQS WKS WVS

M = WQ(SS⊤)(WK)⊤

SA = ReLU(M)WVS

Self-Attention block

arXiv: 2306.11527.

M = WQS(WKS)⊤

Rotationally invariant{

Weight matrix (fit parameters)

 keep translational

equivariance by weight sharing
WQ, WK

SS⊤ =

⃗s1 ⋅ ⃗s1 ⃗s1 ⋅ ⃗s2 ⃗s1 ⋅ ⃗s3 ⃗s1 ⋅ ⃗s4

⃗s2 ⋅ ⃗s1 ⃗s2 ⋅ ⃗s2 ⃗s2 ⋅ ⃗s3 ⃗s2 ⋅ ⃗s4

⃗s3 ⋅ ⃗s1 ⃗s3 ⋅ ⃗s2 ⃗s3 ⋅ ⃗s3 ⃗s3 ⋅ ⃗s4

⃗s4 ⋅ ⃗s1 ⃗s4 ⋅ ⃗s2 ⃗s4 ⋅ ⃗s3 ⃗s4 ⋅ ⃗s4

46

Equivariant under spin-rotation & translation

Akio TomiyaSelf-learning Monte-Carlo

S

SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M)WVS

Self-Attention block

S = (S⊤
1 S⊤

2 S⊤
3 S⊤

4)⊤

S⊤
i = (s1

i s2
i s3

i)⊤

arXiv: 2306.11527.

Spin rotation for Si keeps G invariant. 
G is a matrix for coordinate but not for spin.

47

Equivariant under spin-rotation & translation

Akio TomiyaSelf-learning Monte-Carlo

S

SA

WQS WKS WVS

M = WQ(SS⊤)(WK)⊤

SA = ReLU(M)WVS

Self-Attention block

arXiv: 2306.11527.

M = WQS(WKS)⊤
Rotationally invariant

Transl. equivariant

{

Weight matrix (fit parameters)

Sα =

⃗s1 ⋅ ⃗s1 ⃗s1 ⋅ ⃗s2 ⃗s1 ⋅ ⃗s3 ⃗s1 ⋅ ⃗s4

⃗s2 ⋅ ⃗s1 ⃗s2 ⋅ ⃗s2 ⃗s2 ⋅ ⃗s3 ⃗s2 ⋅ ⃗s4

⃗s3 ⋅ ⃗s1 ⃗s3 ⋅ ⃗s2 ⃗s3 ⋅ ⃗s3 ⃗s3 ⋅ ⃗s4

⃗s4 ⋅ ⃗s1 ⃗s4 ⋅ ⃗s2 ⃗s4 ⋅ ⃗s3 ⃗s4 ⋅ ⃗s4

= SQSK
⊤

How to treat gauge fields
with neural networks?

48

(maybe skip)

ML for LQCD is needed
• Neural networks

• Data processing techniques mainly for 2d
image (a picture = pixels = a set of real #)

• Neural network helps data processing 
e.g. AlphaFold2

• Lattice QCD requires numerical effort 
but is more complicated than pictures

• 4 dimension

• Non-abelian gauge d.o.f. and symmetry

• Fermions (Fermi-Dirac statistics)

• Exactness of algorithm is necessary

• Q. How can we deal with neural nets?

49

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Akio Tomiya

50

Introduction
Configuration generation with machine learning is developing
Year Group ML Dim. Theory Gauge sym Exact? Fermion? Reference
2017 AT, Akinori

Tanaka
RBM  

+ HMC
2d Scalar - No No arXiv: 1712.03893

2018 K. Zhou+ GAN 2d Scalar - No No arXiv: 1810.12879

2018 J. Pawlowski + GAN

+HMC

2d Scalar - Yes? No arXiv: 1811.03533

2019 MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072

2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413

2020 MIT+ Flow 2d SU(N) Equivariant Yes No arXiv: 2008.05456

2020 AT, Akinori
Tanaka + SLMC 4d SU(N) Invariant Yes Partially arXiv: 2010.11900

2021 M. Medvidovic´+ A-NICE 2d Scalar - No No arXiv: 2012.01442

2021 S. Foreman L2HMC 2d U(1) Yes Yes No
2021 AT+ SLHMC 4d QCD Covariant Yes YES! This talk
2021 L. Del

Debbio+ Flow 2d Scalar, O(N) - Yes No
2021 MIT+ Flow 2d Yukawa - Yes Yes
2021 S. Foreman,

AT+
Flowed 
HMC

2d U(1) Equivariant Yes No but compatible arXiv: 2112.01586

2021 XY Jing Neural
net

2d U(1) Equivariant Yes No
2022 J. Finkenrath Flow 2d U(1)
 Equivariant Yes Yes (diagonalization) arxiv: 2201.02216

2022 MIT+ Flow 2d, 4d U(1), QCD Equivariant Yes Yes arXiv:2202.11712 +

2022 AT+ Flow 2d, 3d Scalar Yrs
up to 2022

51

What is conv. neural networks?
The convolution layer can treat a translation transformation

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

Laplacian filter

Edge detection

(Discretization of)∂2

IMPORTANT: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operation just commute)

52

What is conv. neural networks?
Convolution layer = trainable filter

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

w11 w12 w13

w21 w22 w23

w31 w32 w33*

Convolution layer

Laplacian filter

Edge detection

Trainable filter

→
Edge detection
Smoothing
…

This can be any filter which helps feature extraction
but still transitionally equivariant!

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

1 2 1

2 4 2

1 2 1

1
16

Gaussian filter

(Discretization of)∂2

(Gaussian filter)

IMPORTANT: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operation just commute)

53

Convolution neural network
Training can be done with back propagation

Akio Tomiya

w11 w12 w13

w21 w22 w23

w31 w32 w33

Translation

equivariant map

with trainable

parameters

cat = (1
0)

dog = (0
1)

G.A.

Pooling/

flatten

Dense

net

feed
L

loss function

quantifies

error of output

Feedback = training

(Steepest descent)

54

Smearing
Smoothing improves global properties

Akio Tomiya

Eg. Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

We want to smoothen gauge configurations

with keeping gauge symmetry

APE-type smearing

Stout-type smearing
Two types:

M. Albanese+ 1987
R. Hoffmann+ 2007

C. Morningster+ 2003

1 2 1

2 4 1

1 2 1

1
16

Gaussian filter

55

Smearing
Smoothing with gauge symmetry, APE type

Akio Tomiya

APE-type smearing

Uμ(n) → Ufat
μ (n) = 𝒩 [(1 − α)Uμ(n) +

α
6

V†
μ[U](n)]

V†
μ[U](n) = ∑

μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

𝒩 [M] =
M

M†M

= + ∑
ν

α
6𝒩[]

Schematically,

V α /6
𝒩 [⋯] U(1)U Mult

Sum

(1 − α)

1 − α

In the calculation graph,

+

Or projection

M. Albanese+ 1987
R. Hoffmann+ 2007

& shows same transformationV†
μ[U](n) Uμ(n)

→ is as wellU fat
μ [U](n)

+

NormalizationCovariant sum

Smearing is a gauge covariant map

56

Gauge covariant neural network
= trainable smearing

Akio Tomiya

Gauge covariant neural network = general smearing with tunable parameters w

z(l)
μ (n) = w(l)

1 U(l−1)
μ (n) + w(l)

2 𝒢(l)
θ̄

[U]

𝒩(z(l)
μ (n)){

Gauge covariant variational map: Uμ(n) ↦ UNN
μ (n) = UNN

μ (n)[U]

Train (tune, fitting)

AT Y. Nagai arXiv: 2103.11965

Smearing = gauge covariant way of transform gauge configurations

Uμ(n) → Usmr
μ (n) = 𝒩 [(1 − α)Uμ(n) +

α
6

V†
μ[U](n)] V†

μ[U](n) = ∑
μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

𝒩 [M] =
M

M†M
Or projection

Normalization

Covariant sum

UNN
μ (n)[U] = U(4)

μ (n)[U(3)
μ (n)[U(2)

μ (n)[Uμ(n)]]]

point-wise (local)

Gauge covariant NN:

staple

There are several realization of gauge covariant maps https://arxiv.org/abs/2305.02402

https://arxiv.org/abs/2305.02402

Parametrized function

Akio Tomiya

57

Gauge covariant neural network
Schematic illustrations for neural networks (NN)

SD[UNN[U]]

UNN[U]U

Cat

Convolution Dense NN

Covariant NN
(Tunable smearing)

Parameters θ Parameters θ

Parameters θ

Parametrized function

Tune by backprop (train)

Tune by backprop (train)

AT Nagai 2103.11965

Neural networks for images

Neural networks for gauge configurations

Wilson loop
Dirac op.
(Functional

of configurations)

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

SD[U]

Dog
Ans

“Ans”

Alternative realization of gauge symmetric neural net: gauge equivariant neural net -> MIT’s realization

(convolutional) 
Neural network

Gauge Covariant

Neural network

Input Image 
(2d data, structured)

gauge config

(4d data, structured)

Output Image 
(2d data, structured)

gauge config

(4d data, structured)

Symmetry Translation Translation, rotation(90°),
Gauge sym.

Gauge sym

with Fixed param Image filter (APE/stout …) Smearing

Local operation Summing up nearest
neighbor with weights

Summing up staples
with weights

Activation function Tanh, ReLU, sigmoid, … projection/normalization
in Stout/HYP/HISQ

Formula for chain rule Backprop “Smeared force
calculations” (Stout)

Training? Backprop + Delta rule AT Nagai 2103.11965

58

Gauge covariant neural network
= trainable smearing

Akio Tomiya

Dictionary

AT Y. Nagai arXiv: 2103.11965

Well-known

(Index i in the neural net corresponds to n & μ in smearing. Information processing with NN is evolution of scalar field)

Toy application

Akio TomiyaApplication for the staggered in 4d
arXiv: 2103.11965

Mimic different actions:

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action
(Metropolis) S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{

(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

59

U ↦ D[U] ↦ Sf = ϕ†(D†D(m))−1ϕ
m=0.3

U ↦ UNN
θ [U] ↦ D[UNN

θ [U]] ↦ Sθ = ϕ†(D†D(m))−1ϕ
m=0.4

Compare
Construction of Action in MD

Construction of target action

60

SLHMC for gauge system with dynamical fermions

Akio TomiyaSLHMC = Exact algorithm with ML

HMC U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use

HHMC =
1
2 ∑ π2 + Sg + Sf

Self
Learning
HMC

U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965  
and reference therein SLHMC works as an adaptive reweighting!

Gauge covariant neural network can mimics gauge invariant functions
-> It can be used in simulation? -> Self learning HMC!

61

Problems to solve

Akio TomiyaApplication for the staggered in 4d
arXiv: 2103.11965

Mimic different actions:

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action
(Metropolis) S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{

(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

SLHMC works as an adaptive reweighting! 61

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Self
Learning
HMC

Akio Tomiya

62

Application for the staggered in 4d
Results are consistent with each other

Expectation value

arXiv: 2103.11965

Implemented by

63

Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢(⃗u (t))

ResNet

Neural ODE
(Neural IPS 2018 best paper)

arXiv: 1806.07366

arXiv: 1512.03385

Continuum

Layer

Limit

64

Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

U(l)
+

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢(⃗u (t))

ResNet

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

U(l+1)
𝒢θ̄

“Continuous stout smearing is the Wilson flow”

AT Y. Nagai arXiv: 2103.11965

Neural ODE

Gauge-cov net

Neural ODE

for Gauge-cov NN

arXiv: 1806.07366

arXiv: 1512.03385

2010 M. Luscher

(Neural IPS 2018 best paper)

Continuum

Layer

Limit

Continuum

Layer

Limit

“Gradient” flow 
(not has to be gradient of S)

CLIME_jllWilsonloop.jl

Gaugefields.jl

LatticeDiracOperators.jl

QCDMeasurements.jl

65

Package structure
Our lattice QCD codes are constructed by following repositories

Akio Tomiya

Dependency (Automatically solved)

Symbolic operations of Wilson/Polyakov loops

ILDG I/O Gauge fields (+HMC/Heatbath), MPI 
PC/Supercomputers

Fermions (+HMC), Wilson, KS, DW, MPI 
PC/Supercomputers

Wrapper for LatticeDiracOperators.jl &

Gaugefields.jl, QCDMeasurements.jl

- Wizard for parameter files

- HMC/RHMC for SU(Nc)

 - Stout + Wilson/Staggered/DW

- Heatbath for SU(Nc)

- Measurements

- Jupyter, Colab/PC/Supercomputers

etc

See https://github.com/akio-tomiya/LatticeQCD.jl in detail

Measurements in LQCD

(Correlator, Flow, Qtop, etc)

https://github.com/akio-tomiya/LatticeQCD.jl

66

procs 1 2 4 16 32 64 1 2 4 16 32 64# procs

It looks scaling well

AT & Y. Nagai in prep

Akio Tomiya

Wilson inversion / MPI parallel, Strong Scaling

Akio Tomiya

66

Benchmark of Julia + QCD

Absolute execution time Relative speed up

LatticeDiracOperators.jl LatticeDiracOperators.jl

Tested on Yukawa-21@YITP

We need more contributors! 
Please help us

AT & Y. Nagai in prep

We thank to H. Ohno & Issaku Kanamori

67

Benchmark
Code comparison

Akio Tomiya

67

using Random

function main()
T = 10
K = 10^4
N = 12

A = zeros(ComplexF64, (N,N))
V = zeros(ComplexF64, N)
W = zeros(ComplexF64, N)

function myprod(A,V,W)
 for k = 1:N
 for i = 1:N
 W[i] += A[i, k]*V[k]
 end
 end
end
…(cut)…

#include <stdio.h>
#include <complex.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>

#define T 10
#define K 10000
#define N 12

…(cut)…
void myprod(double complex A[N][N], double complex *V,
 double complex *W) {
 for (int k = 0; k < N; k++) {
 for (int i = 0; i < N; i++) {
 W[i] += V[k] * A[k][i];
 }
 }
}
…(cut)…

• Complex matrix (12x12) times complex vector (d=12)

• One set= 10^4 times, and repeated 10 times and averaged

• Code of Julia looks like Python (short, simple) but fast as C 
Julia: 0.0014 (sec), C: 0.0033 (sec). Single core performance is similar

I thank Taku Izubuchi

Attached in backup
Attached in backup

68

Benchmark
Why Julia? (My personal opinion)

Akio Tomiya

68

• Modern scientific programming language

• Easy to make codes. Fast as C/C++ (Julia& C use LLVM)

• Fewer compiling/dependency issues.

• Many people are potentially interested in. (More than 400 people registered to  
“Julia in physics 2022 online workshop” [1]). 4,923 public repo on Github

• No two Language problem. “The fact that while the users are programming in
a high-level language such as R and Python, the performance-critical parts
have to be rewritten in C/C++ for performance”. [2]

• Neural network friendly (Flux.jl). Tensor networks also (iTensor.jl).

• Works on/with

• Xeon, Radeon/Apple silicon/A64FX

• MPI, GPU

[1] https://akio-tomiya.github.io/julia_in_physics/
[2] https://qr.ae/prgSG5

https://qr.ae/prgSG5

69

LLVM?
LLVM = common backend for making binaries on multiple architectures

Akio Tomiya

Julia Compiler

(Just in time)

“Clang” Compiler

(Ahead of Time)

LLVM-optimizer&

LLVM-backend

const K = 5
const N = 1000
A = zeros(Float64, (N,N))
B = zeros(Float64, (N,N))
C = zeros(Float64, (N,N))

#include <stdio.h>

#define K 5
#define N 1000
double A[N][N];
double B[N][N];
double C[N][N];

Execution

https://ja.wikipedia.org/wiki/Ryzen
https://ja.wikipedia.org/wiki/Xeon
https://gigazine.net/news/20200623-japan-fugaku-fastest-supercomputer/

https://ja.wikipedia.org/wiki/Apple_M1

Binary

https://www.fujitsu.com/jp/about/businesspolicy/tech/fugaku/

LLVM-IR

Source

arm

x86

Frontend

used in Fugaku

m1, m2

Optimizing codes

Optimizing codes

LLVM

See: https://en.wikipedia.org/wiki/LLVM and related pages

Frontend

https://en.wikipedia.org/wiki/LLVM

70

Parallelization with A64FX/Fugaku
Julia is ready on Fugaku(?)

Fig. 2. Comparison of latency (top panel) and throughput (bottom panel)
of inter-node point-to-point MPI communication between using MPI.jl in
Julia and IMB benchmarks in C (results provided by R-CCS in [18]). Fugaku
scheduler setup: -L "node=2" -mpi "max-proc-per-node=1".

MPI ranks across 384 nodes using the torus layout, to match the
scheduler configuration of the R-CCS benchmarks. MPI.jl
typically showed very small overhead for messages larger than
1-2 KiB—peak throughput of ping-pong communication with
MPI.jl is within 1% of that reported by R-CCS—, but slightly
larger overhead for messages of smaller sizes. We note that,
contrary to IMB, at the present time MPIBenchmarks.jl
does not implement a cache-avoidance mechanism, which may
explain why MPI.jl appears to show better latency than IMB
for messages with size up to 64 KiB, which corresponds to
the size of the L1 cache of the A64FX CPU. We also observe
that, contrary to [16], we did not find a significant performance
drop for the Allreduce operation for larger message sizes.

B. Type flexibility and reduced-precision with Float16

Developing complex applications using Float16 is not
easy. On A64FX, even the occasional occurrence of subnormals
of Float16 (6 ·10�8 to 6 ·10�5) causes a heavy performance
penalty but a compiler-flag is set to flush them to zero instead9

The available normal range of Float16, 6 · 10�5 to 65, 504,

9https://github.com/JuliaLang/julia/issues/40151.

Fig. 3. Comparison of latency of collective MPI operations
between using MPI.jl in Julia and IMB benchmarks in C (results
provided by R-CCS in [18]): MPI Allreduce (top panel), MPI
Gatherv (middle panel), MPI Reduce (bottom panel). Fugaku
scheduler setup: -L "node=4x6x16:torus:strict-io" -L
"rscgrp=small-torus" -mpi proc=1536.

Fig. 2. Comparison of latency (top panel) and throughput (bottom panel)
of inter-node point-to-point MPI communication between using MPI.jl in
Julia and IMB benchmarks in C (results provided by R-CCS in [18]). Fugaku
scheduler setup: -L "node=2" -mpi "max-proc-per-node=1".

MPI ranks across 384 nodes using the torus layout, to match the
scheduler configuration of the R-CCS benchmarks. MPI.jl
typically showed very small overhead for messages larger than
1-2 KiB—peak throughput of ping-pong communication with
MPI.jl is within 1% of that reported by R-CCS—, but slightly
larger overhead for messages of smaller sizes. We note that,
contrary to IMB, at the present time MPIBenchmarks.jl
does not implement a cache-avoidance mechanism, which may
explain why MPI.jl appears to show better latency than IMB
for messages with size up to 64 KiB, which corresponds to
the size of the L1 cache of the A64FX CPU. We also observe
that, contrary to [16], we did not find a significant performance
drop for the Allreduce operation for larger message sizes.

B. Type flexibility and reduced-precision with Float16

Developing complex applications using Float16 is not
easy. On A64FX, even the occasional occurrence of subnormals
of Float16 (6 ·10�8 to 6 ·10�5) causes a heavy performance
penalty but a compiler-flag is set to flush them to zero instead9

The available normal range of Float16, 6 · 10�5 to 65, 504,

9https://github.com/JuliaLang/julia/issues/40151.

Fig. 3. Comparison of latency of collective MPI operations
between using MPI.jl in Julia and IMB benchmarks in C (results
provided by R-CCS in [18]): MPI Allreduce (top panel), MPI
Gatherv (middle panel), MPI Reduce (bottom panel). Fugaku
scheduler setup: -L "node=4x6x16:torus:strict-io" -L
"rscgrp=small-torus" -mpi proc=1536.

M. Giordano, arXiv:2207.12762v1 [cs.DC] 26 Jul 2022

 has similar scaling of MPI with C

(no obvious overhead)

Tests of MPI + on Fugaku

Send-Recv performance

71
Akio Tomiya

72

Physically symmetric Attention layer

Akio TomiyaTransformer and Attention

Attention layer can capture global correlation
Equivariance reduces data demands for training

Equivariance Capturable
correlation Data demmands Applications

Convolution
(∈ equivariant

layers)
Yes 👍 Local 😲 Low 👍

Image recognition

VAE, GAN 

Normalizing flow

Standard 
Attention layer No 😲 Global 👍 Huge 😲

ChatGPT

GEMINI

Vision Transformer

 Physically
Equivariant

attention 
layer

Yes 👍 Global 👍 ? Kondo system

(this work)

arXiv: 2306.11527

arXiv:1706.03762

73

Application to O(3) spin model with fermions

Akio TomiyaTransformer and Attention

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Ac
ce

pt
an

ce
 ra

tio

Num. of attention layers

Transformers
Linear

Nx=Ny=6

(Lattice sites)

Note: CNN-type does not work in this case.
No improvements with increase of layers. 

(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

~ # of parameters

(same as previous work 
No attention)

arXiv: 2306.11527 + update

Models with the attention

Physical values are consistent  
(as we expected)

Acceptance rate ~ efficiency

Note: As far as we tested,  
CNN-type does not work in this case.

No improvements with increase of layers. 
(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

Observables

Staggered mag.

 0.01

 0.1

 1

 10

 1 10 100

es
tim

at
ed

 M
SE

num. of trainable parameters

Transformers
Linear

Line is just for
guiding eyes

(no meaning)

74

Loss function shows Power-type scaling law as LLM

Akio TomiyaTransformer and Attention

Acceptance rate = exp (− MSE)

Model w/o  
attention

Models with the attention

arXiv: 2306.11527 + update

(1 layer ~ 30 parameters)

Lo
ss

 (M
SE

)

fit range

fit ~(7.1/x)^(1.1)

Es
tim

at
ed

Scaling in LLM [1]

[1] arXiv:2001.08361

