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Two related talks in Lattice2024

Algorithms and artificial intelligence
Jul 29 (Mon), 2024, 11:15AM
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ML for LQCD is needed

e Neural networks

e Data processing techniques mainly for 2d
image (a picture = pixels = a set of real #)

e Neural network helps data processing
e.g. AlphaFold3

o [attice QCD requires numerical effort
but is more complicated than pictures

H 11:}'}IEFFT‘W*ﬁTT

A
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. : T
e 4 dimension

e Non-abelian gauge d.o.f. and symmetry
e Fermions (Fermi-Dirac statistics)

e Exactness of algorithm is necessary

° Q. HOW can we deal Wlth neural nets? http://www.physics.adelaide.edu.au/theorsIinweber/VisuaIQCD/QCDvacuum/



What is the neural networks?

Attempts to gauge symmetry and fermions

7,8 years!
In my paper for fields generation using ML (1712.03893),

If we want to use generative models as lattice QCD
sampler, we must guarantee the gauge symmetry of a
probability distribution for the model. This is because,
configurations which are generated by a algorithm must

1 1 . rf TA1°*. Y 11 : Fa¥al 1

We have created several architectures:

2010.11900, AT+: Gauge invariant self-learning MC for 4d LQCD

TLDR; Tuning of coupling (linear model), and accept/reject

2103.11965, AT+ Gauge covariant self-learning HMC for 4d LQCD
TLDR; Covariant NN = adaptive gradient flow = adaptive stout

2310.13222, AT+: Global symmetric transformer for fermion-spin system
TLDR; Transformer for spin-fermion system, global symmetry

This work, AT+: Gauge symmetric transformer for 4d LQCD

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402


https://arxiv.org/abs/2305.02402

Ove rVi eW/O Utl i ne Akio Tomiya

Gauge covariant transformer for LQCD

Two conditions/restrictions in LQCD:

Non-locality from

Gauge symmetry pseudo-fermions

U(X, X+
( H (1/D) ~ non-local
(I want to mimic
this by NN)
Solutions in neural net: v | v
. arXiv: 2103.11965 AT+ _

1. Gauge covariant net 2. Transformer with global symmetry
(adaptive stout) (Heisenberg spin + electron)
—[ Add&Norm | 2310.13222 AT+
UGl o3 J | D r 2306.11527 AT+

L ? | Self-Attention block I

3. Gauge symmetric Transformer for LQCD
This talk
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Gauge Covariant neural network Akio Tomiya

= trainable smearing (= residual flow) R Abbotts 2401 10874

/—— Loops projected on Lie algebra
U,(n) = U3™(n) = e27H190, (n)

K Trainable parameters

Training done by the back-prop
(extension to the stout paper [1])

1 UPLL go Jofu™”
i i L e fat Ii-r;l-< ------

(with trainable parameters)

Stout-type covariant neural network

This neural network layer makes maps between
gauge configurations with covariance! (trainable
stout for various purpose) [1] C. Morningster+ 2003

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402


https://arxiv.org/abs/2305.02402

Ove rVi eW/O Utl i ne Akio Tomiya

Gauge covariant transformer for LQCD

Two conditions/restrictions in LQCD:

Non-locality from
pseudo-fermions
(1/D) ~ non-local

Gauge symmetry
U(X, X+p)

(I want to mimic
this by NN)
Solutions in neural net: \» | v
" arXiv: 2103.11965 AT+ ]
1. Gauge covgfiant net 2. Transformer with global symmetry
(adaptive stout) (Heisenberg spin + electron)

2310.13222 AT+
2306.11527 AT+

3. Gauge symmetric Transformer for LQCD
This talk




Equivariance and convolution

Convolutional Neural network have been good job but local

Convolutional neural layers in neural networks keep translational symmetry,
it can be generalized to any continuous/discrete symmetry in the theory. It helps generalization.
conv ~ neural net with n-th nearest neighbor connections (local)

ﬁ\

conyv

conv
\ Distant correlations here can be captured
/. by 3 steps of convolutional operation
(Repetition of local operation)

e.d.
1d Input image

However, 1 step of convolutional layer can pick up only local correlation
and representability of neural networks is limited.

Global correlations are important.

How can we overcome these difficulties?




Transformer and Attention

Attention layer used in Transformers (GPT, Bard)  axi:1706.0s762

Output @} OpenAl
Probabilities
| Softtmax ) ChatG PT

| Linear |
3

(. )
| Add & Norm |}~
Feed

For\;vard
() ‘ =
Feed Attention
Forward D D) N x
A ‘ J
Nx | _—{Add & Norm J [ Ad,\j:;:gm .
Multi-Head Multi-Head
Attention Attention
— ) = Attention layer (in transformer model) has been
Positional Positional . " '
encoding (P ¢ =i introduced in a paper titled
Input Output - -
Embé;ddmg Embfding “Attention is all you need” (1706.03762)
- o State of the art architecture of language
(shifted right)

processing.
Attention layer is essential.

Figure 1: The Transformer - model architecture.



Transformer and Attention

Attention layer can capture non-local correlations axi:170s.0s7:2
Modifier in language can be non-local

rel T

Eg.| am Akio Tomiya living in Japan, who studies machine learning and physics

In physics terminology, this is non local correlation.
The attention layer enables us to treat non-local correlation
with a neural net!

Simplified version of Attention/Transformer

| Skip connection

I > WOX | M= WX (WEX)T
/' Non-local product v
X = am B WKX (Non-local
Akio correlation)
: [ VY Add & normalization |— X’
— ReLUM)W'X |— T
A f Weighted
rray O Block- (This example is single-head)
word vectors spin
Transf. )
Word~\{ector (Trainable) Self-Attention
X: matrix T

hese can be reieated



—>| Add & Norm I

T

I Self-Attention block I
A

—>|  Add&Norm |

T

| Self-Attention block |< |

A

Transformer for spin system

Akio Tomiya

arXiv: 2306.11527.

Symmetric Attention layers (parametrized block spin trf)

SO = <S(l_1) + SA> position-wise

/’/(Si) — Si/“Si” )

~

S, = ReLUM)W"S

?

Attention = Correlators

‘ M = WOS(WESHT ‘

] 1

Self-Attention block

—

ws | | wks

-

Smeared fields
Rot. equivariant
Trsl. equivariant
Skip connection
Normalized!

Smearing (BST)

Rot. equivariant
Trsl. equivariant
trainable!

How can we make this gauge covariant?



Gauge covariant transformer
(CAS’O Work in progress
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Gauge covariant transformer for LQCD

Two conditions/restrictions in LQCD:

Non-locality from
pseudo-fermions
(1/D) ~ non-local

(I want to mimic
this by NN)

Gauge symmetry
U(X, X+p)

Solutions in neural net:

\ A

arXiv: 2103.11965 AT+

1. Gauge cow flant net 2. Transformer witigd§lobal symmetry
(adaptive stout) (Heisenberg spin + electron)
—[ Add&Norm | 2310.13222 AT+
Ud { ?9 ]gi U+ | selt_memion e 2306.11527 AT+

3. Gauge symmetric Transformer for LQCD
This talk




Gauge covariant transformer: CASK **™™"

CASK?

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

IRISH COFFEE STOUT |33

CASK | BARREL AGED IMPERIAL ]2;9‘7
~ AGED IN paRR

ELS FROM CLONAKILTY DISH




Gauge covariant transformer: CASK **™™"

Stout kernel

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

Add and la stout ) i
m Covariant attention block

T CASK = Covariant Attention

Self-Attention with Stout Kernel
_ It is named in an obvious reason&




Gauge covariant transformer: CASK **™™"

Collection of ML/LQCD

Lattice ML(Framework) ML/Lattice
i Phys. Rev. D 107, 054501 AT+
- Demon method (inverse MC -
ar)giv1508.04986 AT-?— Linear regression o Qauge inv. SLMC
- Hopping parameter Trivializing with SD eq a la Luscher
2212.11387 AT+
Stout & Flow CNN/Equivariant NN Gauge covariant nzeo’c2 .
| - Global symmetric
m(ene(l)r:r:‘:glgd 2 Transformer - GPT Transformer 2306.11527 AT+

- CASK (this talk) (g8




Gauge covariant transformer: CASK “ ™

Ildea: Attention must be invariant

Attention matrix in transformer ~ correlation function (with block-spin transformed spin)

-> we replace it with “correlation function for links” in a covariant way

X a, , ~ Retr UU())

U T not invariant

SRR s ! I B M 1 (cannot be used
_______ DOOQ)

UT invariant under
local SU(N)

iInvariant
under global O(3)

In total, output is covariant Qi ju ™~ Re tr V, (Z)U T(] ) (with activation)

In total, output is covariant




Gauge covariant transformer: CASK **™™"

Structure of gauge symmetric attention using stout

Procedure in three steps: Loop operator
0. U™ : Input configuration/Links projected on Lie algebra

[1] 2021 AT+

1. 3 types of (trainable) stout [1] -> U Q Yk UY (they have different weights)
U® = exp[p®LIUMU™  a=QKYV
t weights

2. Construct attention matrix (Rectangular Wilson loop) using U QUK > Qs %)

Q T
A\V \./UK ~ Cl(*,*) (

with activation)

3. Construct “stout smeared” [1] link with wei A« ) and Uv,U (as matrix mult)

U out — cXp [Cl(*,*)L[ U V]] U n Covariant

(This can be extend to have multi-head trivially) \_/ Loop operator

projected on Lie algebra




Gauge covariant transformer: CASK “ ™

Physically symmetric Attention layer for LQCD

Attention layer can capture global correlation
Equivariance reduces data demands for training

Equivariance Gauge? ggﬁzﬁgﬁ derr?:'n?n ds Applications
Convolution | ;, . | Nor\r/ﬁji’zﬁAl}llow
(cequvariant | Yes o= | Yes = | Local @ | Low = SLHMC
layers) 2103.11965 AT+
Standard . . | . ChatGPT
Attention layer No &) No & |Global :=| Huge @ GEMINI
arXiv:1706.03762 Vision Transformer
Equivariant | . | Kondo system
attention for | YeS = No & |Global - = ? (2310.13222 AT+
spin 2306.11527 AT+)
Equivariant | |
attention for Yes & Yes & Global -E ? This work
gauge




Gauge covariant transformer: CASK “ ™

Simulation parameter

Construct effective

e Self-learning HMC (1909.02255, 2021 AT+), $iLatticeQCD.jl

action using operators an exact algoritAm
with Ut
4 * Exact Metropolis test and MD with effective action
I o Target S4: m = 0.3, dynamical staggered fermion,
P« Nf=2, L* = 4", SUQ), f = 2.7
T o Effective action in MD ($ eff)
Self-Attention
t

e Same gauge action

»| Add and norm a /a stout

. o m.+ = (.4 dynamical staggered fermion, Nf=2

4
1

T — e CASK with plaquette covariant kernel
T

Self-Attention

7 e Attention = 7-links rect staple (=3 plaquette)

o U links are replaced by U in D

stag

_________________________ ___________ o “Adaptive|y reweighted HMC”



Gauge covariant transformer: CASK **™™"

Loss = difference of action

Loss w.r.t. training

100
10} { * | oss decreases along
= . with the training steps
) L:
s _
s | o it works as same as the
5 oot stout (covariant net)
0.001 — —
| | o Gain?
0.0001 : : : :
0 200 400 600 800 1000
epoch
= MC steps



Gauge covariant transformer: CASK **™™"

Attention blocks improve acceptance

Acceptance rate w.r.t. training

0.3 | | | | | | | R e
- ASK |
0.25 1 Stout

(covariant net)

g 027 * |n terms of acceptance,
§ st CASK has gain

0.1

e |t is still improving

0.05 STOUT —— -

CASK2 ——

CASK3 ——

CASK4 ——

0 | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epoch
= MC steps



Su m m a ry Akio Tomiya

Transformer NN for Lattice QCD
* (Gauge covariant attention layer (CASK) has been developed

* Test case for 4d SU(N) with dynamical fermions in tiny lattice
e it is implemented with jU“.é

* Training is done using back-prop for gauge fields

* |t works as covariant Neural network and it has gain &

* |t is still working in progress

* Scaling law for model size (and system size?)
* Removing pseudo-fermions? (as same as the spin 2306.11527 AT+)
* Optimization of architecture

* Sparse-attention/star-attention/etc

* Bigger model? Applications (contour deform, flow, control variates)?

S KAKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Th an ks'






Plaquette
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ApplicatiOns Akio Tomiya

Configuration generation with machine learning is developing

Configuration generation for 2d scalar

Restricted Boltzmann machine + HMC: 2d scalar A. Tanaka, AT 2017
The first challenge, machine learning + configuration generation. Wrong at critical pt. Not exact.

GAN (Generative adversarial network ): 2d scalar J. Pawlowski+ 2018
Results look OK. No proof of exactness G. Endrodi+ 2018

. .| Exact algorithm, gauge Symmetry - -« .o oo viiii it i ittt ittt ittt sttt aeannn

Flow based model: 2d scalar, pure U(1), pure SU(N) IIiIT %% Google Brain 2019, 2020, 2021

Mimicking a trvializing map using a neural net which is reversible and has tractable Jacobian.
Exact algorithm, no dynamical fermions. SU(N) is treated with diagonalization.

L2HMC for 2d U(1) (Sam Foreman+ 2021)

. .lDynamical fermionS, 4 Dimension .....................................................................
Self-learning Monte Carlo (SLMCQ) for lattice QCD arxiv 2010.11900 Y. Nagai, AT, A. Tanaka

Non-abelian gauge theory with dynamical fermion in 4d
Using gauge invariant action with linear regression
Exact. Costly (Diagonalize Dirac operator)

Self-learning Hybrid Monte Carlo for lattice QCD (SLHMC, This talk)
Non-abelian gauge theory with dynamical fermion in 4d arxiv 2103.11965 Y. Nag, AT
Using covariant neural network to parametrize the gauge invariant action = & N
Exact Pk

Gauge covariant neural network and full QCD simulation



Application for the staggered in4d *“~*™

Problems to solve

arXiv: 2103.11965
Our neural network enables us to parametrize gauge symmetric action

covariant way.

e.g. SNN[UT = S,

laq : U};IN(n) [ U]:

SNN[UT = S,

UNNwIUY

tag

Test of our neural network?

Can we mimic a different Dirac operator using neural net?

Artificial example for HMC:
Target action  S[U] = Sg[U] + Sf[Cb, Uim = 0-3],

ActioninMD  SplU1 = S, |U| + S¢[p, Up™[UT; my, = 0.4],

Q. Simulations with approximated action can be exact?
-> Yes! with SLHMC (Self-learning HMC)

Gauge covariant neural network and full QCD simulation



SL MC = Exact algorithm with ML *°™"

SLHMC for gauge system with dynamical fermions

arXiv: 2103.11965 and reference therein

m Metropolis

Both use
1
_ 2
Hinve = 5 E n°+ 8y + 5

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis E

Metropolis

1
— Z: 2
H—E T +Sg+Sf[U]

1
— z: 2 NN
H= 5 -+ Sg+Sf[U [U]]

Neural net approximated
fermion action but exact

Metropolis &

Gauge covariant neural network and full QCD simulation



Application for the staggered in4d *“~*™

Lattice setup and question

arXiv: 2103.11965

Target Two color QCD (plaguette + staggered)
Algorithms SLHMC, HMC (comparison)
Parameter Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Targetaction  S[U] = S,|U| + S;[¢p, U;m = 0.3], For Metropolis Test

Action in MD _ NN : _

Observables Plaqguette, Polyakov loop, Chiral condensate (1/71//)

Code Full scr.atch,. , ﬁl_attlceucndl AT+ (in prep)

fU”y written in Julia lang' (But we added some functions on the public version)

Gauge covariant neural network and full QCD simulation



Lattice QCD code

We made a public code in Julia Language

\_

(What isju“"a? 1.0pen source scientific language (Just in time compiler) )

2.Fast as C/Fortran (sometime, faster)
3.Productive as Python

4.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)
5.Supercomputers support Julia )

(ﬁ LatticeQCD.jl (Official package) : Laptop/desktop/PC-cluster/Jupyter (Google Colab)\

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover
Domain-wall (experimental) + Measurements

s 1. Download Julia binary A
3 steps in 5 min 2. Add the package through Julia package manager
\_ 3. Execute! Y,

https://github.com/akio-tomiya/LatticeQCD. ||

rll

SU(3), Quenched, L=4"4, Heatbath

065
o060
§ 055} |
g 050
o 045

040

fffffffffff

o N H o))

0.450.500.550.600.650.70 5 10 15 20 25 00 01 02 03 04 05 06
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go‘s | | 01} oo o..
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|

Gauge covariant neural network and full QCD simulation


https://github.com/akio-tomiya/LatticeQCD.jl

Deta i IS (S ki p) Akio Tomiya

Network: trainable stout (plag+poly)

arXiv: 2103.11965

(0) poly _ _ _
Structure of NN QfP(M — p‘()‘llq()zlaQ(n) + {/’?;))lyAOsOly(") (1= 4?, All p is weight
(Polyakov loop+plaq PootysVi (1), (u=1=1,2,3) O meas an loop operator

in the stout-type)
QY (n) = 2[ (n)]1a TA: Traceless, anti-hermitian operation

U D(n) = exp(Q(m) U (n)

2- layered stout

NN _ 772 (D
U U] =U;"(n) [Uu (”)[Uﬂ(”)” with 6 trainable parameters

Neural network
Parametrized action:

Action for MD is built by
gauge covariant NN

SlU1 = S,|U| + S¢|, UpN UL my, = 0.4],

2
Invariant under,

SH[Ua ¢] - S[U’ ¢]
rot, transl, gauge trf.

b

: 1
Loss function: L(U] = >

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)
2.Perform SLHMC with fixed parameter

Gauge covariant neural network and full QCD simulation



Deta i IS (S ki p) Akio Tomiya

Results: Loss decreases along with the training

arXiv: 2103.11965

. 1 ? Intuitively, eA(-L) is understood as
Loss function: LUl = 5 SolU. #1 = SLU. 41| Boltzmann weight or reweighting factor.
Prior HMC run (training) Training history

1\ 10 — mh=0.4
(‘)C] 6 «— 0 — naLgé ), »

Hl [T rrl‘—)(l)
OLy(D) _ 9Ly(D) Sy ¢
au)gL—l) 85’9 d’lU(L 1) _l 40 -

m _QRCZU

u'm 60 -

Q): sum of un-traced loops

C: one U removed Q

20 -
A: A polynomial of U. (Same object in stout)

0 20 40 60 80 100
MD time (= training steps)
Without training, e/ (-L)<< 1,
this means that candidate with approximated action
never accept.
After training, e”(-L) ~1, and we get
practical acceptance rate!

We perform SLHMC with these values!

Gauge covariant neural network and full QCD simulation



Equivariance and convolution

Akio Tomiya

Knowledge > Convolution layer = trainable filter, Equivariant

Filter on image

Laplacian filter

01]o0
K o|1]2]+
0|1]0

(Discretization of 9%)

shift to right

Edge detection

Trainable filter

W11

W12

W13

>I< W21

W22

W23

W31

W32

W33

shift to right

shift to right

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

Translational operation is commutable with convolutional neurons (equivariant)

This can be any filter which helps feature extraction (minimizing loss)
Equivariance reduces data demands. Ensuring symmetry (plausible Inference)
Many of convolution are needed to capture global structures




Akio Tomiya

Machine learning for theoretical physics

What am 1?
| am a particle physicist, working on lattice QCD.
| want to apply machine learning on lattice QCD.

My papers https://scholar.google.co.jp/citations?user=LKVqy wAAAAJ

Detection of phase transition via convolutional neural networks

A Tanaka, A Tomiya Detecting phase transition
Journal of the Physical Society of Japan 86 (6), 063001

Digital quantum simulation of the schwinger model with topological term via adiabatic

state preparation _
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya Quantum computing
arXiv preprint arXiv:2001.00485 for quantum field theory

Biography
2006-2010 : University of Hyogo (Superconductor)
2015 : PhD in Osaka university (Particle phys)
2015 - 2018 : Postdoc in Wuhan (China)
2018 - 2021 : SPDR in Riken/BNL (US)
2021 - 2024 : Assistant prof. in IPUT Osaka (ML/AI)
2021 - 2024 : ML(ML/AI)

Kakenhi and others
Leader of proj AO1 Transformative Research Areas, Fugaku

o maEE Program for Promoting Researches

ThEbbhs MLPhYs Foundation of "Machine Learning Physics" | [liheiciien

Deep Learning
and Physics AT

Large-scale lattice QCD simulation

ﬁfm%g?@? P Grantin-Aid for Transformative Research Areas(A) and develongi i Yo chrology
" +quantum computer
Others:
— | T Supervision of Shin-Kamen Rider
Organizing "Deep Learning and physics The 29th Outstanding Paper Award of the Physical Society of Japan

14th Particle Physics Medal: Young Scientist Award



SLHMC = Exact algorithm with ML *~*

SLHMC for gauge system with dynamical fermions

Gauge covariant neural network can mimics gauge invariant functions
-> It can be used in simulation? -> Self learning HMC!

HMGC

Self

Learning
HMC

arXiv: 2103.11965
and reference therein

Metropoliis -

Metropoliis --

m Metropolis

Both use
1

HHMC=52n2+Sg+Sf

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis

1
— z: 2
H_E T +Sg+Sf[U]

1
H = Z: 2 NN
— 5 T +Sg+Sf[U [U]]

Neural net approximated
fermion action but exact

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Problems to solve

arXiv: 2103.11965

Mimic different actions:
(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

Target action . o
(Metropolis) SIUT = Sg[U] T Sf[ﬁb, Usm = 0.3] ,

ActioninMD  SplU1 = S, |U| + S¢|p, Up"[U Ty my, = 0.4],

Metropolis

Self ry
Learning H = %Zn2+sg+sf[U]
HMC ' Eom

1
H = Z: 2 NN
— 5 T +Sg+Sf[U [U]]

Metropoliis --

Neural net approximated
fermion action but exact

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Results are consistent with each other

2500 L
2000 - 1

1500 1

Count

1000 - ;

500 - ,

0.70
Plaquette

30001 bt |
25001 - F

+ 2000 1 |

(-

3

3 1500+
1000 \

500 -

0

038 0.40 0.42 0.44

0.46
Chiral condensate

0.48

0.50

Implemented by ﬁl_attice[]cn\jl le

arXiv: 2103.11965

| HMC |
4000 + | SLHMC X
J
., 30001 1
C
S !
© 2000 -
}
1000 - ‘ s
T
O . . SPVETSSP S B ) b I" " ; ;
—-1.0 -0.5 0.0 0.5 1.0
Polyakov loop
Expectation value
Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)
SLHMC  Chiral condensate 0.4241(5)

=



Introduction

Akio Tomiya

Configuration generation with machine learning is developing

Year | Group ML | Dim. | Theory | Gaugesym | Exact? Fermion? Lattice2021/ref
2017| AT+ +R|-E|;|\I>|Ao 2d Scalar - No No arXiv: 1712.03893
2018| K.Zhou+ | GAN | 2d Scalar - No No arXiv: 1810.12879
2018 | J. Pawlowski + fm\‘c 2d Scalar - Yes? No arXiv: 1811.03533
2019 MIT+ | Flow 2d Scalar - Yes No arXiv: 1904.12072
2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413
2020 MIT+ Flow 2d SU(N) | Equivariant Yes No arXiv: 2008.05456
2020 AT+ |SLMC| 4d SU(N) | Invariant Yes Partially arXiv: 2010.11900
2021 | M. meavidovic+ | A-NICE | 2d Scalar - No No arXiv: 2012.01442
2021 |S. Foreman | L2HMC| 2d U(1) Yes Yes No

2021| AT+ |SLHMC| 4d QCD | Covariant Yes YES!

2021 D:-bg% Flow 2d | Scalar, O(N) - Yes No

2021 MIT+ | Flow | 2d | Yukawa - Yes Yes

2021/ S Foreman, | Flowed | 2d U(1) | Equivariant| Yes | No but compatible | arXiv: 2112.01586
2021| XY Jing | Neura 2d U(1) | Equivariant | Yes No

2022 | J. Finkenrath | Flow 2d U(1) | Equivariant Yes |Yes (diagonalization)|  arxiv: 2201.02216
2022 MIT+ Flow 2d U(1) Equivariant Yes Yes (diagonalization) arXiv:2202.11712

This is not complete list. Related to lattice field theory and biased

+ ...




Transformer and Attention

Attention layer can capture non-local correlations axi:170s.0s7:2
Modifier in language can be non-local

,/ T~

Eg. | am Akio Tomiya living in Japan, who studies machine learning and physics

In physics terminology, this is non local correlation.
The attention layer enables us to treat non-local correlation
with a neural net!

Schematic picture (in physics terminology)

Self attention
Modified §entence > S, = 0,,(M)V'5 ~ Weighted eff. ops. |«
(Vectors, field conf) 3 0
- W': param
M = KQT Calculation of Attention score WK param
Sentence in ~ a set of 2pt functions for effective operators | | yyV. param
and sentence out T T
O=W2S ~BST| |K=WwWKSs ~BST| | V=w"s ~BST
Sentence 4  “Queries” 4 “Key” 4 “Value”
(Vectors, field conf) ’




Akio Tomiya

Self-learning Monte-Carlo

Attention layer makes effective spin field v 230611507

S'— H_ ;= tr[S'(JS") ']

¢
—>I Add & Norm I
T
| Self-Attention block |
! Metropolis Metropolis '
—>I Add & Norm I with Heff — -Hastings "’“""“&
§ with H& Heff
Self-Attention block
I eA ention bloc I SLMC
~Cmiion 1| (S} (S} —(S})— (S} (S} —
I Self-Attention block I
A

Next, we explain
how can we realize the effective model

S = with Attention layers




Akio Tomiya

Self-learning Monte-Carlo

Equivariant Attention layer e 208 11807

7

S’ — H s = tr[S'(JS) '] SO = (S(H) + SelfAttentionSpin(S(l_1)))

4 210,
. A
— Add & N
[ jdeom X(S) =S,/IS)
Self-Attention block Z
I eA ention bioC I / S \
A
—>| Add & Norm I s
4 Self-Attention block
I SeII-Attention block I S, = ReLUM) W' S| «—
—>|  Add&Norm | T
! : / M = WHES(WRS)T
I Self-Attention block Ij\
‘ | 1

Smeared fields >l WS Wks IVARY
S — A T T

\_ S J




Self-learning Monte-Carlo

Previous work

Target system: Classical Heisenberg spin S-+ Fermion on 2d lattice

H=—t2(6;‘a6ja+h.0.)+;ZS /JtZA;Am,

Brute force effective model:
n nearest neighbor

Hg}}near —_ Z J;ffsl ‘ S] + EO
(L)
_ _ fFQNN | QNN
H,=- ) JMSNN. SN 1 F,
(L)




Self-learning Monte-Carlo

Equivariant under spin-rotation & translation o 2308 11507

SA

A

Self-Attention block

Sy = ReLUM)W" S| <+

M = WRS(WES)T

WS | {Wrs | [ WYS
! I !

S

S=(s7 7 s7 87 )
ST= (s} s )

l l

IS;1 = /617 + PP+ (57 =1

Gram matrix /
STS, STS, STs, STs,)

SIS, S8, S8, S8,
SIS, S7S, S{S; SJS,
SiS1 SiS, SiSy S8y,

G=S'S =

\

Spin rotation for Si keeps G invariant.
G is a matrix for coordinate but not for spin.

If an effective hamiltonian is a function
Gram matrix, it has rotational symmetry



Self-learning Monte-Carlo

Equivariant under spin-rotation & translation o 2308 11507
Weight matrix (fit parameters)

A Self-Attention block | ..==="" M — WQ(S S T)(WK)T

S, = ReLUM)W"S

Rotationally invariant

s ool

QoK T WQ, whk keep translational
M = WOS(WKS)

equivariance by weight sharing

Q K V - .—> - - - - - -
W TWS TWS Sp81 SpcSy SpcS83 8108y
52 El 32'32 3')2'3')3 32 34

S S3 Sl S3'S2 S3 S3 S3 S4
334 El 34'32 34'33 334 34




Self-learning Monte-Carlo

Equivariant under spin-rotation & translation o 2308 11807
T
S=(s/ 8 87 8] )

T_ (.1 2 3\'
Self-Attention block Si _ (Si 5 S')

SA

A

Spin rotation for Si keeps G invariant.
G is a matrix for coordinate but not for spin.

Sy = ReLUM)W" S| <+

T

M = WS(WESHT

] 1

wWos | |WES| | wWYs

1 1




Self-learning Monte-Carlo

Equivariant under spin-rotation & translation o 2308 11507
Weight matrix (fit parameters)

s
Self-AttentionI p——— M — Q(S S T)(WK)T

S, = ReLUM)W"S

s ool

M = WOS(WESHT

— S S T Rotationally invariant
Q~¥K

Transl. equivariant

Q K V —_ .—) —_ —_— —_ —_ g g
il S TW 5 TW 5 S1*8S1 S;°8y Sy 83 S1°84
3)2 31 32‘32 32'33 3)2 3)4

Sa’= - - - - - - - -

S S3 Sl S3‘S2 S3 S3 S3 S4
S4 Sl S4‘S2 S4‘S3 S4 S4




How to treat gauge fields
with neural networks?

(maybe skip)



ML for LQCD is needed

e Neural networks

e Data processing techniques mainly for 2d
image (a picture = pixels = a set of real #)

e Neural network helps data processing
e.g. AlphaFold2

o [attice QCD requires numerical effort
but is more complicated than pictures

I jrir'—IT*f _
T
T
L

e 4 dimension

e Non-abelian gauge d.o.f. and symmetry

e Fermions (Fermi-Dirac statistics)

e Exactness of algorithm is necessary

° Q. HOW can we deal Wlth neural nets? http://www.physics.adelaide.edu.au/theorsIinweber/VisuaIQCD/QCDvacuum/

49



Introduction

Akio Tomiya

Configuration generation with machine learning is developing

Year | Group ML | Dim. | Theory | Gaugesym | Exact? Fermion? Reference
2017 | AT, Akinori +RE.\'>|An 2d Scalar - No No arXiv: 1712.03893
2018 | K. Zhou+ | GAN 2d Scalar - No No arXiv: 1810.12879
2018 | J. Pawlowski + f_ﬁ/’l\'n 2d Scalar - Yes? No arXiv: 1811.03533
2019| MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072
2020| MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413
2020| MIT+ Flow 2d SU(N) | Equivariant Yes No arXiv: 2008.05456
2020| AL Aot G| MC | 4d SU(N) | Invariant Yes Partially arXiv: 2010.11900
2021 | M. Medvidovic+ | A-N|CE 2d Scalar - No No arXiv: 2012.01442
2021 | S. Foreman | L2HMC 2d U(1) Yes Yes No

2021 AT+ SLHMC 4d QCD Covariant Yes YES! This talk
2021| LDel | Flow 2d  |Scalar, O(N) - Yes No

2021 MIT+ | Flow | 2d | Yukawa - Yes Yes

2021 | S Foreman, Flljaltlxgd 2d U(1) | Equivariant Yes No but compatible | arXiv: 2112.01586
2021| XY Jing Ngg:al 2d UQ) Equivariant Yes No

2022 | J. Finkenrath | Flow 2d U(1) Equivariant Yes Yes (diagonalization) arxiv: 2201.02216
2022 MIT+ Flow | 2d,4d | U(1), QCD | Equivariant Yes Yes arXiv:2202.11712 +
2022 AT+ Flow 2d, 3d Scalar Yrs

up to 2022




Akio Tomiya

What is conv. neural networks?

The convolution layer can treat a translation transformation

Filter on image

Laplacian filter
110
-2 | 1
110

ol Y

Edge detection

(Discretization of 0°)

IMPORTANT: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operation just commute)




Akio Tomiya

What is conv. neural networks?

Convolution layer = trainable filter

Filter on image

Laplacian filter
O|11]0
1121
0(1]0

Edge detection

(Discretization of 0°)

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

Trainable filter

Edge deteCtiOn Gaussian filter

W11 | W12| W13 I

Smoothin — 2|42
W21 | W22 [ W23 (Gaussian filter) 16 o |4

W31 | W32 [ W33

This can be any filter which helps feature extraction

but still transitionalli eiuivariant!



Convolution neural network

Training can be done with back propagation

loss function
quantifies
error of output

W11 | W12 [ W13

W21 | W22 [ W23

—_—) —>
W31 | W32 | W33 G.A. feed L
B Pooling/

Translation | flatten
equivariant map
with trainable

parameters

.....
ke,
......
.............................
------

.
.
.
*
-------------
___________
----------
- an®
L] -
L] s
L] s
L] s
.....
............
nnnnnnnnnnnnnnnnn




Smea ring Akio Tomiya

Smoothing improves global properties
Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

We want to smoothen gauge configurations
with keeping gauge symmetry

APE-type smearing M. Albanese+ 1987
Two types: R. Hoffmann+ 2007
Stout-type smearing C. Morningster+ 2003



Smea ring Akio Tomiya

Smoothing with gauge symmetry, APE type

M. Albanese+ 1987
APE_type smearing R. Hoffmann+ 2007

Covariant sum Normalization

M
fat — a T — i i
U(n) — Uktn) = [(1 ~ )U,(n) + EVM[U](n)] M) =~ Orproectn
VZ[U](H) = Z Uy(n) Uﬂ(n + D) Uj(n + )+ - VJ[U](n)& U, (n) shows same transformation
UFv *U;at[U](n) is as well

Schematically,

— =N [o-o—>—+iZF1+14 ]

In the calculation graph,

H{E ()

Smearing is a gauge covariant map




Gauge Covariant neural network Akio Tomiya

= trainable smearing AT Y. Nagai arXiv: 2103.11965
Smearing = gauge covariant way of transform gauge configurations

Covariant sum
staple

mr a
Uﬂ(l’l) — U; n)y=N [(1 — a)Uﬂ(n) + EV;[U](H)] ViU () = Z U,(mU,(n + DU (1 + fi) + -

UFV

Normalization

M
N [M] = Or projection
VMM

Gauge covariant neural network = general smearing with tunable parameters w

(D) — O =1 (D)
z’(n) = w U (n) + w)'EY U] . -

N (z/ff)(n)) point-wise (local)

Gauge covariant NN: UNNn)[U] = U (n) (U m) [UP () |U, ()] ||

Gauge covariant variational map: Uﬂ(n) > U};IN(H) — U};IN(VZ)[U]

There are several realization of gauge covariant maps https://arxiv.org/abs/2305.02402


https://arxiv.org/abs/2305.02402

Gauge Covariant neural network Akio Tomiya

Schematic illustrations for neural networks (NN)

Neural networks for images
Parametrized function

Ans
Cat «—— Dog

Convolution
Parameters ¢ Parameters ¢

Tune by backprop (train)
Neural networks for gauge configurations

Parametrized function
AT Nagai 2103.11965

“AnS”
SHLUNN[U]+— Sp[U]

Wilson loop
Dirac op.

0 - (Functional
Covariant NN of configurations)

(Tunable smearing)
Parameters 0

Tune by backprop (train)

http://www.physics.adelaide.edu.au/theory/staff/leinweber/Visual QCD/QCDvacuum/

Alternative realization of gauge symmetric neural net: gauge equivariant neural net -> MIT’s realization



Gauge covariant neural network

= trainable smearing

Akio Tomiya

AT Y. Nagai arXiv: 2103.11965

P (convolutional) Gauge Covariant
D|Ct|0nary Neural network Neural network
- Image gauge config
P (2d data, structured) (4d data, structured)
Image gauge config
Output (2d data, structured) | (4d data, structured)
Symmetry Translation Translation, rotation(90°),
Gauge sym.
with Fixed param Image filter (APE/stout ...) Smearing

Local operation

Summing up nearest
neighbor with weights

Summing up staples
with weights

Activation function

Tanh, RelLU, sigmoid, ...

projection/normalization
in Stout/HYP/HISQ

Formula for chain rule

Backprop

“Smeared force
calculations” (Stout)

Training?

Backprop + Delta rule

AT Nagai 2103.11965

Well-known

(Index i in the neural net corresponds to n & p in smearing. Information processing with NN is evolution of scalar field)



Application for the staggered in4d *“~*™

Toy application

arXiv: 2103.11965

Mimic different actions:
(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

Target action . o
(Metropolis) SIUT = Sg[U] T Sf[ﬁb, Usm = 0.3] ,

ActioninMD  SplU1 = S, |U| + S¢|p, Up"[U Ty my, = 0.4],

Construction of target action

U+ DIU] = S;=¢"(D'D(m)) '

Compare

Construction of Action in MD

U UYNUT = D[UNNIU]| = Sy = ¢ (DTD(m))” ‘¢




SLHMC = Exact algorithm with ML *~*

SLHMC for gauge system with dynamical fermions

Gauge covariant neural network can mimics gauge invariant functions
-> It can be used in simulation? -> Self learning HMC!

HMGC

Self

Learning
HMC

arXiv: 2103.11965
and reference therein

Metropoliis -

Metropoliis --

m Metropolis

Both use
1

HHMC=52n2+Sg+Sf

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis

1
— z: 2
H_E T +Sg+Sf[U]

1
H = Z: 2 NN
— 5 T +Sg+Sf[U [U]]

Neural net approximated
fermion action but exact

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Problems to solve

arXiv: 2103.11965

Mimic different actions:
(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

Target action . o
(Metropolis) SIUT = Sg[U] T Sf[ﬁb, Usm = 0.3] ,

ActioninMD  SplU1 = S, |U| + S¢|p, Up"[U Ty my, = 0.4],

Metropolis

Self ry
Learning H = %Zn2+sg+sf[U]
HMC ' Eom

1
H = Z: 2 NN
— 5 T +Sg+Sf[U [U]]

Metropoliis --

Neural net approximated
fermion action but exact

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Results are consistent with each other

2500 L
2000 - 1

1500 1

Count

1000 - ;

500 - ,

0.70
Plaquette

30001 bt |
25001 - F

+ 2000 1 |

(-

3

3 1500+
1000 \

500 -

0

038 0.40 0.42 0.44

0.46
Chiral condensate

0.48

0.50

Implemented by ﬁl_attice[]cn\jl le

arXiv: 2103.11965

| HMC |
4000 + | SLHMC X
J
., 30001 1
C
S !
© 2000 -
}
1000 - ‘ s
T
O . . SPVETSSP S B ) b I" " ; ;
—-1.0 -0.5 0.0 0.5 1.0
Polyakov loop
Expectation value
Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)
SLHMC  Chiral condensate 0.4241(5)

=



Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet =D { Cg l l D arXiv: 1512.03385

Continuum
Layer
Limit

-
' du' ) |
Neural ODE — cg( U ) arXiv: 1806.07366

dl. (Neural IPS 2018 best paper)




Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet =D { Cg l l D arXiv: 1512.03385

Continuum
Layer
Limit

v dﬁ’(l‘)

Neural ODE — ?(7(0) arXiv: 1806.07366
d A (Neural IPS 2018 best paper)

Gauge—cov net U(l) ( é U(H'l) AT Y. Nagai arXiv: 2103.11965
l Continuum L ?

Neural ODE U,u (n) _ ?é U(t) “Gradient” flow
for Gauge-cov NN dt — ( J7; (I”l)) (not has to be gradient of S)

“Continuous stout smearing is the Wilson flow”

2010 M. Luscher




Package structure

Our lattice QCD codes are constructed by following repositories

Dependency (Automatically solved) Wrapper for LatticeDiracOperators.jl &
Gaugefields.jl, QCDMeasurements. |l
- - - Wizard for parameter files
4—
++LatticeQCD.ji ~ HMG/RHMG for SUNG
: - Stout + Wilson/Staggered/DW
QCDMeasurements.jl - Heatbath for SU(Nc)
- Measurements
- - - - Jupyter, Colab/PC/Supercomputers
LatticeDiracOperators.jl et
Gaugefields.jl Measurements in LQCD

(Correlator, Flow, Qtop, etc)

| Wilsonloop.jl CLIME jil _ _
Fermions (+HMC), Wilson, KS, DW, MPI

T PC/Supercomputers
ILDG 1/O Gauge fields (+HMC/Heatbath), MPI
PC/Supercomputers

Symbolic operations of Wilson/Polyakov loops

See https://github.com/akio-tomiya/LatticeQCD.jl in detail



https://github.com/akio-tomiya/LatticeQCD.jl

Benchmark of Julia + QCD A

D

W

Wilson inversion / MPI parallel, Strong Scaling _.."

. Nagai in prep

Tested on Yukawa-21@YITP

Absolute execution time Relative speed up
Wilson CG test L=16"3x32 Wilson CG test L=16"3x32
175 - I
LatticeDiracOperators.ijl 2 LatticeDiracOperators.jl
150 - b
2 g
o 125 &
% Ta
@ 100 - =
TQ:: g_ 1072 1
— 75 4 ]
® Z
% 50 "
- 2
25 - [
0- oud ~ o1 © ) ) T
— ™~ - o0 O O (Ve - b - ol — — —
S N S e e e S & = a7 & A
e e o e — — ~N - i - - - i g
# procs 1 ) 4 o 16 30 64 # procs 1 2 4 . 16 32 &4

It looks scaling well

We need more contributors!
Please help us

We thank to H. Ohno & Issaku Kanamori



IE;‘E’IF“::IﬂlIF'1I£3I'-I<1 Akio Tomiya
Code comparison

using Random #include <stdio.h>
m #include <complex.h>

main() #include <math.h>

10 #include <time.h>
1074 #include <stdlib.h>

12

#define 10
zeros(ComplexF64, (N,N)) #define K 10000
zeros(ComplexF64, N) f#tdefine N 12
zeros (ComplexF64, N)

~(cut)..

myprod(A,V,W) myp rod ( AIN] [N],
for k = 1:N *W) {

for 1 = 1:N for ( k 0; k < N; k++) {

= i < N; i++) {
end W[i] += VI[k] *x A[K][i];

end
end
~(cut)..

WIil += A[i, KI#VIK] for (ot &= 0

e Complex matrix (12x12) times complex vector (d=12)
e One set= 10”4 times, and repeated 10 times and averaged

e Code of Julia looks like Python (short, simple) but fast as C
Julia: 0.0014 (sec), C: 0.0033 (sec). Single core performance is similar

| thank Taku lzubuchi 67



BenChmark Akio Tomiya

Why Julia? (My personal opinion)

[1] https://akio-tomiya.github.io/julia_in_physics/
[2] https://gr.ae/prgSG5

Modern scientific programming language
Easy to make codes. Fast as C/C++ (Julia& C use LLVM)
Fewer compiling/dependency issues.

Many people are potentially interested in. (More than 400 people registered to
“Julia in physics 2022 online workshop” [1]). 4,923 public repo on Github

No two Language problem. “The fact that while the users are programming in
a high-level language such as R and Python, the performance-critical parts
have to be rewritten in C/C++ for performance”. [2]

e Neural network friendly (Flux.jl). Tensor networks also (iTensor.jl).
Works on/with

e Xeon, Radeon/Apple silicon/A64FX

e MPI, GPU v LB



https://qr.ae/prgSG5

L LVM ? Akio Tomiya

LLVM = common backend for making binaries on multiple architectures

Source Execution

Frontend

julia

x86

Julia Compiler [\ LLVM-optimizer&
(Just in time) N LLVM-backend
Optimizing codes p F XK

zeros(Float64, (N,
zeros(Float64, (N,
zeros(Float64, (N,

LLVM-IR

Frontend

“Clang” Compiler
(Ahead of Time)

Optimizing codes

used in Fugaku


https://en.wikipedia.org/wiki/LLVM

Julia is ready on Fugaku(?)

Parallelization with A64FX/Fugaku

M. Giordano, arXiv:2207.12762v1 [cs.DC] 26 Jul 2022

Send-Recv performance
Throughput of MPI PingPong @ Fugaku

6 -

—— Julia (MPLjl)
_‘_

C (Riken-CCS) —— Julia (MPLjl)

—@— C (Riken-CCS)

5 F

z

@ ‘f

S o)
Q

)

3_3— U,

c Q

o -

) ]

© 2

£

-

1 1 1 1 1 1 1 1 1 1 1 10_6 1
1B 4B 16B 64B 256B 1KiB 4KiB 16KiB 64 KiB 256 KiB 1 MiB 4 MiB 4B 16 B

message size

1 1 1 1 1 1 1 1 1
64B 256B 1KiB 4KiB 16KiB 64KiB 256 KB 1MiB 4 MiB
message size

julia has similar scaling of MPI with C
(no obvious overhead)



71

Machine Learning (ML) is a branch of artificial intelligence (Al) that utilizes algorithms and
statistical models to allow computers to perform specific tasks without explicit instructions.
In simpler terms, it's teaching machines to learn patterns from data and make intelligent

decisions.

ML is typically categorized into three main types: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning is when the algorithm learns from
labeled data to predict outcomes for unseen data. Unsupervised learning is when the
algorithm identifies patterns in unlabeled data. Reinforcement learning is a process in which
the algorithm learns to make decisions by interacting with an environment where it receives

rewards or penalties.

At the heart of ML is the concept of learning from experience (E) with respect to some task
(T) and performance measure (P), a machine is said to learn if its performance at tasks in T,

as measured by P, improves with experience E.

Machine learning's potential applications are vast, including but not limited to natural
language processing, image recognition, and predictive analytics. As a physicist, you may
find its uses in pattern detection, prediction, and simulation in physical systems particularly

intriguing.

Akio Tomiya



Transformer and Attention

Physically symmetric Attention layer

Attention layer can capture global correlation
Equivariance reduces data demands for training

Equivariance Captura!o le Data demmands Applications
correlation
Convolution | . | Image recognition
(€ equivariant Yes = | ocal & Low = VAE, GAN
layers) Normalizing flow
Standard * 3 ChatGPT
Attention layer No Q) GIObaI -E Huge @ . GEMINI
Vision Transformer
arXiv:1706.03762
Physically
Equivariant | | N Kondo system
layer arXiv: 2306.11527




Transformer and Attention aXiv: 230811527 » uodare

Application to O(3) spin model with fermions

Acceptance rate ~ efficiency Observables
11 Transformers —e— g2,
Linear —&— 0.15 ,-1 e
2 08 = 01 -
© Pz Original —<—
o . _ 0.05 ¢ Linear .
S 0.6 Models with the attention 0 - 3layer attention —=—
= e
A &
g 04 o8 | Staggered mag.
< | < 06
0.2 I (same as previous work , = 04}
No attention) 02 | g
O | | | | \ \ \ 0 * ] * s .
0 1 2 3 4 5 6 7 8 0.01 0.1 1 10

Num. of attention layers T
~ # of parameters
Note: As far as we tested,
CNN-type does not work in this case.
No improvements with increase of layers.
(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

o Io.o NXZNyZG

uli ‘Lattice sites!

Physical values are consistent
(as we expected)



Transformer and Attention

Loss function shows Power-type scaling law as LLM

arXiv: 2306.11527 + update
Acceptance rate = exp (—\/ MSE)

10 —_—
3 Transfor_mers O 5.6 —— L=(N/8.8-1013)0076
m Linear © | _ s
) | 8 o
= 1 | Model w/o g 2
— - attention
7p *4| Scaling in LLM [1
2, 105 107 10°
3 Parameters
- 0.1
L :
= . . 1 Line is just for
= Models with the attention | guiding eyes
L fit range (no meaning)
0.01 — ——
1 10 100
. num. of trainable parameters
julii] (1 layer ~ 30 parameters) fit ~(7.1/x)A(1.1)

[1] arXiv:2001.08361



