Machine Learning Estimation on the Trace of Inverse Dirac Operator using the Gradient Boosting Decision Tree Regression

Benjamin J. Choi¹, Hiroshi Ohno¹, Takayuki Sumimoto² and Akio Tomiya³

¹Center for Computational Sciences, University of Tsukuba, Japan ²FLECT Co., Ltd., Japan ³Division of Mathematical Sciences, Tokyo Woman's Christian University, Japan

> Lattice 2024 Liverpool, 29 July 2024

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of AI technology

1/17

Benjamin J. Choi (CCS)

Introduction and Motivation

For Lattice QCD calculations

• on observables such as cumulants of the chiral order parameter,

 $\ensuremath{\bullet}$ the trace of operators (Tr O) is often necessary.

• ex) $O = M^{-1}$ (inversed Dirac operator).

- *M* (Dirac operator): a large sparse matrix on the lattice *➡* Trace estimation by linear CG solver for stochastic sources *➡* This needs considerable computational cost.
- We present our preliminary result
 - * on machine learning estimation of $\text{Tr}M^{-n}$
 - from other observables
 - $\, \ast \,$ ex) ${\rm Tr} M^{-m}$ where m < n, plaquette, Polyakov loop
 - with gradient boosting decision tree regresson
 - based on the methodology of Yoon et al., PRD 100 014504 (2019).

Measurement Information

ID	$L^3 \times T$	β	κ	$c_{\rm SW}$	N _{conf}
0	$16^3 \times 4$	1.60	0.13575	2.065	5500
1	$16^3 \times 4$	1.60	0.13577	2.065	5500
2	$16^3 \times 4$	1.60	0.13580	2.065	5500
3	$16^3 \times 4$	1.60	0.13582	2.065	5500
4	$16^3 \times 4$	1.60	0.13585	2.065	5500

✤ Measured by H. Ohno (2017 — 2018)

- Ohno et al. PoS LATTICE2018 (2018) 174
- # HW: Oakforest-PACS system (Boku et al. arXiv:1709.08785)
- * SW: BQCD program (Haar *et al.* EPJWoC **175** 14011 (LAT2017))
- ***** Iwasaki gauge action, Wilson clover action, $N_f = 4$
- \circledast Red row: first order phase transition occurs here.

Benjamin J. Choi (CCS)

Correlation Map of Observables

(a) $\kappa = 0.13575$, ID 0 (heaviest quark) (b) $\kappa = 0.13585$, ID 4 (lightest quark)

We evaluate the correlation coefficients for Plaquette, Polyakov loop and $\text{Tr}M^{-n}$ (n = 1, 2, 3, 4)

Red color: strong correlation machine learning estimation

Using the correlation between observables, we try ML estimation.

Benjamin J. Choi (CCS)

ML estimation

Machine Learning Estimation

- We adopt machine learning method for the estimation of observables.
 - Yoon et al., PRD 100 014504 (2019)
- Machine learning estimation
 - $X \text{ (input)} \rightarrow Y^{\mathbb{P}} \approx Y \text{ (output)}$
 - * **P**: prediction by machine learning
- A machine f determines fit function during the learning sequence

$$f(X) = Y^P \approx Y$$

5/17

Bias correction in the ML estimation

In general and in principle,

$$\bar{Y}_{(\mathrm{UL})} = \frac{1}{N_{\mathrm{UL}}} \sum_{i=1}^{N_{\mathrm{UL}}} Y_i^P$$

is not exact due to the bias.Prediction bias in the ML

(Bias) =
$$\langle Y \rangle - \langle Y^P \rangle$$

Bias Correction set

- We split labeled set into training and bias correction set.
- **1** Training with $\{X, Y\} \in \{\text{TR}\}$
- **2** Predicting with

$$\bar{Y} = \frac{1}{N_{\text{UL}}} \sum_{i=1}^{N_{\text{UL}}} Y_i^P + \frac{1}{N_{\text{BC}}} \sum_{j=1}^{N_{\text{BC}}} (Y_j - Y_j^P)$$

(Yoon et al., PRD **100** 014504)

Analysis detail Search for optimal range Optimal range for ratio of labeled/training set

- To reduce the computational cost ⇒ minimal sufficient labeled set.
 In bias correction set, Y as well as Y^P is used to determine Y

 We should grant sufficient statistics to bias correction set.
 - ▶ Need to find **optimal range** for ratio of labeled/training set!

We also observe

- * $\mathcal{R}_{TR} = 0$ % to check the labeled set itself,
- $\mathcal{R}_{TR} = 100 \%$ to check the result without the bias correction.

Gradient boosting decision tree regression

😻 We use 🔰 LightGBM (📕 Microsoft) via JuliaAI/MLJ.jl.

- \bullet boosting stage = 40 \blacklozenge empirically determined with L2-Loss plot.
- * depth of tree = 3, learning rate = 0.1, subsampling = 0.7 ▶ Same with Yoon *et al.*, PRD **100** 014504 (2019)
- * Statistical error estimation: Bootstrap resampling, $N_{\rm BS} = 10,000$
- * Check $\mathcal{P}1$ and $\mathcal{P}2$ as in Yoon *et al.*, PRD **100** 014504 (2019) **1** \mathcal{P} 1: bias corrected ML prediction

$$\bar{Y}_{\mathcal{P}1} = \frac{1}{N_{\rm UL}} \sum_{i \in \{\rm UL\}} Y_i^{\rm P} + \frac{1}{N_{\rm BC}} \sum_{j \in \{\rm BC\}} \left(Y_j - Y_j^{\rm P} \right)$$
(1)

 $\mathcal{P}2$: weighted average of $\mathcal{P}1$ and direct measured labeled set

$$\bar{Y}_{\mathcal{P}2} = \frac{N_{\rm UL}}{M} \, \bar{Y}_{\mathcal{P}1} + \frac{N_{\rm LB}}{M} \, \bar{Y}_{_{\rm (LB)}}$$

To improve the statistical precision

Evaluation of ML estimation

An example

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}1$, ID-0)

Benjamin J. Choi (CCS)

Trace estimation by ML

11/17

Evaluation of ML estimation

An example

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}2$, ID-0)

Summary $\kappa = 0.13575$ (heaviest quark mass)

Preliminary results of ML estimation (1)

- ***** For a ML trace estimation $X \to Y$, (X: input, Y: target)

$$V = xxis: Y = Tr M^{-n} (n = 1, 2, 3, 4)$$

- # $\mathcal{P}2$ results of ID-0: $\kappa = 0.13575$ (heaviest quark mass)

ID-0	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
${\rm Tr} M^{-1}$	{ 30 , 50}	$\{35, 40\}$			
${\rm Tr} M^{-2}$	$\{30, 50\}$	$\{35, 40\}$	$\{25,40\}$		
${\rm Tr}M^{-3}$	$\{30, 50\}$	$\{35, 40\}$	$\{40, 40\}$	$\{15,70\}$	
$\mathrm{Tr}M^{-4}$	$\{45,60\}$	$\{45, 60\}$	$\{40, 40\}$	$\{35,50\}$	$\{25,40\}$

In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2, 3),

• $\mathcal{R}_{LB} \ge 30 \%$ for plaquette, $\mathcal{R}_{LB} \ge 35 \%$ for Polyakov loop • Not so good at $Y = \text{Tr}M^{-4}$ estimation: $\mathcal{R}_{LB} \ge 45 \%$

Summary $\kappa = 0.13580$ (1st order phase transition)

Preliminary results of ML estimation (2)

- ***** For a ML trace estimation $X \to Y$, (X: input, Y: target)

$$V = 3.5$$
 $Y = 7.5$ $Tr M^{-n} (n = 1, 2, 3, 4)$

- # $\mathcal{P}2$ results of ID-2: $\kappa = 0.13580$ (1st order phase transition)

ID-2	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
${\rm Tr} M^{-1}$	$\{10, 80\}$	{ 10 , 80}			
$\mathrm{Tr}M^{-2}$	{ 10 , 90 }	$\{10, 80\}$	$\{10, 90\}$		
${\rm Tr}M^{-3}$	{ 10 , 90 }	{ 10 , 7 0}	$\{10, 80\}$	$\{10, 90\}$	
${\rm Tr}M^{-4}$	$\{40, 40\}$	{ 40 , 8 0}	$\{40, 80\}$	$\{40, 80\}$	$\{40, 80\}$

In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2, 3),

* $\mathcal{R}_{LB} \geq 10 \%$ for plaquette and Polyakov loop

Wot so good at $Y = \text{Tr}M^{-4}$ estimation: $\mathcal{R}_{\text{LB}} \ge 40 \%$

Summary $\kappa = 0.13585$ (lightest quark mass)

Preliminary results of ML estimation (3)

- ***** For a ML trace estimation $X \to Y$, (X: input, Y: target)

- #
 $\mathcal{P}2$ results of ID-4: $\kappa=0.13585$ (lightest quark mass)

ID-4	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
${\rm Tr} M^{-1}$	{ 30 , 40}	$\{35, 40\}$			
${\rm Tr} M^{-2}$	{ 30 , 50}	$\{40, 50\}$	$\{30,40\}$		
${\rm Tr}M^{-3}$	N.A.	N.A.	N.A.	N.A.	
$\mathrm{Tr}M^{-4}$	N.A.	N.A.	N.A.	N.A.	N.A.

- * N.A. \blacktriangleright Cannot find proper { \mathcal{R}_{LB} , \mathcal{R}_{TR} }.
- In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2),
 - * $\mathcal{R}_{LB}{\geq}\;30\,\%$ for plaquette, $\mathcal{R}_{LB}{\geq}\;40\,\%$ for Polyakov loop

Summary and to-do list

We checked the ability of ML estimation X → Y on
1 X = Plaquette/Polyakov loop, Y = TrM⁻ⁿ (n = 1, 2, 3, 4)
2 X = TrM⁻ⁿ, Y = TrM^{-m} (n < m)
using LightGBM (Microsoft) via JuliaAI/MLJ.jl.

and to-do list

ML estimation works well with heavier quark mass (smaller κ).
Especially works well at the 1st order phase transition point.

- WL estimation with X = Plaquette/Polyakov loop
 ➡ works well if labeled set were ≥ 30% of total set
- In this preliminary analysis, we found that bias correction works well.
- Expand the analysis with other gauge ensembles.
 different lattice volume L³ × T, different lattice spacing a.
- Further investigation and comparison with other linear regression algorithms such as LASSO or RIDGE.

Benjamin J. Choi (CCS)

Thank you for your listening!

Benjamin J. Choi (CCS)

Trace estimation by ML

17 / 17

Backup slides

Benjamin J. Choi (CCS)

Trace estimation by ML

29 July 2024

1 / 25

Backup $\kappa = 0.13575$ (heaviest quark mass)

Preliminary results of ML estimation (Backup, 1)

- ♥ For a ML trace estimation $X \to Y$, (X: input, Y: target)

- # $\mathcal{P}2$ results of ID-0: $\kappa = 0.13575$ (heaviest quark mass)

ID-0	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
${\rm Tr} M^{-1}$	{ 30 , 50}	$\{35, 40\}$			
${\rm Tr} M^{-2}$	$\{30, 50\}$	$\{35, 40\}$	$\{25,40\}$		
${\rm Tr}M^{-3}$	$\{30, 50\}$	$\{35, 40\}$	$\{40, 40\}$	$\{15,70\}$	
$\mathrm{Tr}M^{-4}$	$\{45,60\}$	$\{45,60\}$	$\{40, 40\}$	$\{35,50\}$	$\{25,40\}$

In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2, 3),

*R*_{LB}≥ 30 % for plaquette, *R*_{LB}≥ 35 % for Polyakov loop
Wot so good at *Y* = Tr*M*⁻⁴ estimation: *R*_{LB}≥ 45 %

Backup $\kappa = 0.13577$

Preliminary results of ML estimation (Backup, 2)

- ***** For a ML trace estimation $X \to Y$, (X: input, Y: target)

*R*_{LB}, *R*_{TR}} = {30, 50} *▶* ↓ in *R*_{LB}≥ 30 % and *R*_{TR} ≤ 50 %. *P*2 results of ID-1: *κ* = 0.13577

ID-1	Plaquette	Polyakov loop	${\rm Tr} M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
$\mathrm{Tr}M^{-1}$	{ 30 , 40}	$\{35, 40\}$			
${\rm Tr} M^{-2}$	$\{20, 50\}$	$\{35, 40\}$	$\{15,40\}$		
${ m Tr} M^{-3}$	$\{25, 50\}$	$\{35, 40\}$	$\{30,60\}$	$\{20, 80\}$	
$\mathrm{Tr}M^{-4}$	$\{45, 40\}$	{ 50 , 40}	$\{45, 50\}$	$\{45,50\}$	$\{25,50\}$

In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2, 3),

* $\mathcal{R}_{LB} \ge 30 \%$ for plaquette, $\mathcal{R}_{LB} \ge 35 \%$ for Polyakov loop * Not so good at $Y = \text{Tr}M^{-4}$ estimation: $\mathcal{R}_{LB} \ge 45 \%$ Backup $\kappa = 0.13580$ (1st order phase transition)

Preliminary results of ML estimation (Backup, 3)

- ♥ For a ML trace estimation $X \to Y$, (X: input, Y: target)

- # $\mathcal{P}2$ results of ID-2: $\kappa = 0.13580$ (1st phase transition)

ID-2	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
${\rm Tr} M^{-1}$	$\{10, 80\}$	{ 10 , 80}			
$\mathrm{Tr}M^{-2}$	{ 10 , 90 }	$\{10, 80\}$	$\{10, 90\}$		
${\rm Tr}M^{-3}$	{ 10 , 90 }	{ 10 , 7 0}	$\{10, 80\}$	$\{10, 90\}$	
${\rm Tr}M^{-4}$	$\{40, 40\}$	{ 40 , 8 0}	$\{40, 80\}$	$\{40, 80\}$	$\{40, 80\}$

In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2, 3),

* $\mathcal{R}_{LB} \geq 10 \%$ for plaquette and Polyakov loop

Wot so good at $Y = \text{Tr}M^{-4}$ estimation: $\mathcal{R}_{\text{LB}} \ge 40\%$

Backup $\kappa = 0.13582$

Preliminary results of ML estimation (Backup, 4)

- ***** For a ML trace estimation $X \to Y$, (X: input, Y: target)

*R*_{LB}, *R*_{TR}} = {30, 50} *▶* ↓ in *R*_{LB}≥ 30 % and *R*_{TR} ≤ 50 %. *P*2 results of ID-3: *κ* = 0.13582

ID-3	Plaquette	Polyakov loop	${\rm Tr} M^{-1}$	$\mathrm{Tr}M^{-2}$	${\rm Tr}M^{-3}$
$\mathrm{Tr}M^{-1}$	{ 10 , 60}	{ 20 , 80}			
${\rm Tr} M^{-2}$	{ 10 , 9 0}	{ 10 , 60}	$\{10, 80\}$		
${ m Tr} M^{-3}$	{ 10 , 70}	$\{10, 50\}$	$\{15,60\}$	$\{10, 90\}$	
$\mathrm{Tr}M^{-4}$	{ 40 , 5 0}	{ 40 , 50}	{ 40 , 50 }	$\{40,50\}$	{ 40 , 50}

* In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2, 3),

* $\mathcal{R}_{LB} \ge 10 \%$ for plaquette and Polyakov loop

♥ Not so good at $Y = \text{Tr}M^{-4}$ estimation: $\mathcal{R}_{\text{LB}} \ge 40\%$

Backup $\kappa = 0.13585$ (lightest quark mass)

Preliminary results of ML estimation (tBackup, 5)

- ***** For a ML trace estimation $X \to Y$, (X: input, Y: target)

-
 $\ref{P2}$ results of ID-4: $\kappa=0.13585$ (lightest quark mass)

ID-4	Plaquette	Polyakov loop	$\mathrm{Tr}M^{-1}$	$\mathrm{Tr}M^{-2}$	$\mathrm{Tr}M^{-3}$
${\rm Tr} M^{-1}$	$\{30, 40\}$	$\{35, 40\}$			
${\rm Tr} M^{-2}$	$\{30, 50\}$	$\{40, 50\}$	$\{30,40\}$		
${\rm Tr}M^{-3}$	N.A.	N.A.	N.A.	N.A.	
$\mathrm{Tr}M^{-4}$	N.A.	N.A.	N.A.	N.A.	N.A.

- * N.A. \blacktriangleright Cannot find proper { \mathcal{R}_{LB} , \mathcal{R}_{TR} }.
- In the $Y = \text{Tr}M^{-n}$ estimation (n = 1, 2),
 - * $\mathcal{R}_{LB}{\geq}\;30\,\%$ for plaquette, $\mathcal{R}_{LB}{\geq}\;40\,\%$ for Polyakov loop

Fit result of Wilson flow scale parameter at zero T

Fit result of pseudoscalar meson mass at zero T

Quark mass

Quark mass

We obtain κ_c (kappa critical) from

$$\kappa_c(g_0^2) = 0.125 + 0.003681192 g_0^2 + 0.000117 (g_0^2)^2 + 0.000048 (g_0^2)^3 - 0.000013 (g_0^2)^4$$

where
$$g_0^2 = \frac{2N_c}{\beta}$$
 is the coupling constant.

With
$$\beta = 1.60$$
, we have $\kappa_c \approx 0.14041$.

We obtain quark mass $m_q a$ with

$$m_q a = \frac{1}{2} \left(\frac{1}{\kappa} - \frac{1}{\kappa_c} \right)$$

Benjamin J. Choi (CCS)

9/25

Computational gain

\$	By the measurement	t logs of	BQCD	program,	we have	$(N_{\rm conf} = 5500$)
----	--------------------	-----------	------	----------	---------	------------------------	---

ID	κ	Total CPU-time [hour]	All CG [hour]	CG for single $\operatorname{Tr} M^{-n}$ [hour]
0	0.13575	65.91	59.12	3.94
1	0.13577	65.97	59.15	3.94
2	0.13580	65.51	58.66	3.91
3	0.13582	64.44	57.56	3.84
4	0.13585	63.35	56.58	3.77

• For single gauge conf., CG is called 150 times where $N_{\rm src} = 10$.

• For a single determination $\operatorname{Tr} M^{-n}$, it takes ≈ 4 hours.

For GBDT regression on Julia code (with ordinary laptop/desktop),
Time for model training ≈ 3.17 seconds (99.71% compilation time)
Time for N_{BS} = 10000 bootstrap resampling ≤ 1 minute
negligible comparing with CG time on supercomputer.
(ex. 1) ML estimation on Tr M⁻¹ → Tr M⁻² with 30% labeled set,
we save ≈ 35 % of CG time.
(ex. 2) ML estimation on Plaquette → Tr M⁻³ with 30% labeled set,

 $* \rightarrow we save \approx 70 \% of CG time.$

Optimal boosting stage

* x-axis: boosting stage (number of iteration)

y-axis: L2-loss for machine learning $X \to Y$

$$(L2 \text{ loss}) \equiv \sum_{i=1}^{N_{\text{TR}}} (Y_i - Y_i^P)^2$$

* optimal boosting stage ≈ 40

Visualization of decision tree

An example with $X = \operatorname{Tr} M^{-1}$, $Y = \operatorname{Tr} M^{-2}$ for $X \to Y$ learning

- Example for a boost stage.
- \oplus depth of tree = 3
- * number of leaf (green cell, $Y = \operatorname{Tr} M^{-2}$) = 6

Optimal ratio of labeled/training set (backup)

- With M = N_{LB} + N_{UL} and N_{LB} = N_{TR} + N_{BC}, let us assume that
 N_{LB} = 0.2M labeled set is 20 % of total set.
 N_{TR} = 0.5N_{LB} training set is 50 % of labeled set.
- \clubsuit Then the distribution of TR/BC/UL set is shown as, for example,

TR UL UL UL UL BC UL UL UL UL TR UL UL UL UL BC ····

where x-axis corresponds to the gauge configuration index.

To reduce the computational cost ➡ fewest possible labeled set.
In bias correction set, Y as well as Y^P is used to determine \$\overline{Y}\$.
➡ We should grant sufficient statistics to bias correction set.

 $\blacksquare \Rightarrow \text{Need to find optimal ratio of labeled/training set!}$

Correlation Maps

Correlation Map of Observables (ID 0, ID 1)

Correlation Maps

Correlation Map of Observables (ID 2, ID 3)

We evaluate the correlation coefficients for Plaquette, Polyakov loop and $\text{Tr}M^{-n}$ (n = 1, 2, 3, 4)

Correlation Maps

Correlation Map of Observables (ID 4)

(e) $\kappa = 0.13585$, ID 4

- We observe weak correlation between $\text{Tr}M^{-4}$ and other observables.

Benjamin J. Choi (CCS)

Example on ID-0

Corr. Scatter of Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation (ID-0)

- (a) $\{TR\}$
- *x*-axis: Plaquette
- y-axis: Tr M^{-3}
- {TR}: Training set
- {BC}: Bias correction set
- ♦ {UL}: Unlabeled set
- $\mathcal{R}_{LB} = 30\%, \, \mathcal{R}_{TR} = 10\%$

(b) $\{BC\}$

- (c) $\{UL\}$
- Blue circle: original data
- Orange circle: ML estimation
- Black vertical line:
 - \blacktriangleright average of plaquette
- ✤ Yellow horizontal line:
 ➡ average of Tr M^{-3}

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}1$, ID-0)

Example on ID-0

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}2$, ID-0)

Example on ID-0

Example on ID-2

Corr. Scatter of Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation (ID-2)

- (a) $\{TR\}$
- * x-axis: Plaquette
- y-axis: Tr M^{-3}
- ♦ {TR}: Training set
- # {BC}: Bias correction set
- {UL}: Unlabeled set
- $R_{\rm LB} = 30\%, \, \mathcal{R}_{\rm TR} = 10\%$

(b) {BC}

(c) $\{UL\}$

- **Blue circle: original data**
- Orange circle: ML estimation
- Black vertical line:
 - \blacktriangleright average of plaquette
- ✤ Yellow horizontal line:
 ➡ average of Tr M^{-3}

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}1$, ID-2)

Example on ID-2

Benjamin J. Choi (CCS)

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}2$, ID-2)

Example on ID-2

Example on ID-4

Corr. Scatter of Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation (ID-4)

(a) $\{TR\}$

- \clubsuit x-axis: Plaquette
- y-axis: Tr M^{-3}
- {TR}: Training set
- # {BC}: Bias correction set
- ♦ {UL}: Unlabeled set
- $\mathcal{R}_{LB} = 30\%, \, \mathcal{R}_{TR} = 10\%$

(b) {BC}

(c) $\{UL\}$

- **Blue circle: original data**
- Orange circle: ML estimation
- Black vertical line:
 - \Rightarrow average of plaquette
- ✤ Yellow horizontal line:
 ➡ average of Tr M^{-3}

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}1$, ID-4)

Example on ID-4

Benjamin J. Choi (CCS)

Example: Plaquette $\rightarrow \text{Tr}M^{-3}$ estimation ($\mathcal{P}2$, ID-4)

Example on ID-4

Benjamin J. Choi (CCS)