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Introduction Introduction and Motivation

Introduction and Motivation

For Lattice QCD calculations

on observables such as cumulants of the chiral order parameter,
the trace of operators (Tr O) is often necessary.

ex) O = M−1 (inversed Dirac operator).

M (Dirac operator): a large sparse matrix on the lattice

Trace estimation by linear CG solver for stochastic sources
This needs considerable computational cost.

We present our preliminary result

on machine learning estimation of TrM−n

from other observables

ex) TrM−m where m < n, plaquette, Polyakov loop

with gradient boosting decision tree regresson
based on the methodology of Yoon et al., PRD 100 014504 (2019).
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Introduction Measurement Information

Measurement Information

ID L3 × T β κ cSW Nconf

0 163 × 4 1.60 0.13575 2.065 5500
1 163 × 4 1.60 0.13577 2.065 5500
2 163 × 4 1.60 0.13580 2.065 5500
3 163 × 4 1.60 0.13582 2.065 5500
4 163 × 4 1.60 0.13585 2.065 5500

Measured by H. Ohno (2017 — 2018)

Ohno et al. PoS LATTICE2018 (2018) 174

HW: Oakforest-PACS system (Boku et al. arXiv:1709.08785)

SW: BQCD program (Haar et al. EPJWoC 175 14011 (LAT2017))

Iwasaki gauge action, Wilson clover action, Nf = 4

Red row: first order phase transition occurs here.
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Analysis detail Correlation map

Correlation Map of Observables
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(a) κ = 0.13575, ID 0 (heaviest quark)
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(b) κ = 0.13585, ID 4 (lightest quark)

We evaluate the correlation coefficients for Plaquette, Polyakov loop
and TrM−n (n = 1, 2, 3, 4)
Red color: strong correlation machine learning estimation
Using the correlation between observables, we try ML estimation.
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Analysis detail ML estimation

Machine Learning Estimation

We adopt machine learning method for
the estimation of observables.

Yoon et al., PRD 100 014504 (2019)

Machine learning estimation

X (input) → Y P ≈ Y (output)

P : prediction by machine learning

A machine f determines fit function
during the learning sequence

f(X) = Y P ≈ Y
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Analysis detail ML estimation

Machine Learning Estimation of Observables

For ML estimation of f(X) = Y P ≈ Y ,

# of data X: M = NLB +NUL

# of data Y : NLB

1 Train f to get Y from X on labeled set.

2 Predict Y P from X on unlabeled set:

f(X) = Y P ≈ Y .

Do we use all labeled set for training?
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Analysis detail Bias correction technique

Bias correction in the ML estimation

In general and in principle,

Ȳ(UL) =
1

NUL

NUL∑
i=1

Y P
i

is not exact due to the bias.

Prediction bias in the ML

(Bias) = ⟨Y ⟩ − ⟨Y P ⟩

We split labeled set into
training and bias correction set.

1 Training with {X,Y } ∈ {TR}
2 Predicting with

Ȳ =
1

NUL

NUL∑
i=1

Y P
i +

1

NBC

NBC∑
j=1

(Yj−Y P
j )

(Yoon et al., PRD 100 014504)
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Analysis detail Search for optimal range

Optimal range for ratio of labeled/training set

To reduce the computational cost minimal sufficient labeled set.

In bias correction set, Y as well as Y P is used to determine Ȳ .
We should grant sufficient statistics to bias correction set.

Need to find optimal range for ratio of labeled/training set!

M = # of total data set (M = NLB +NUL)

NLB = # of labeled set (NLB = NTR +NBC)

NTR = # of training set

1 Find out minimal RLB ≡ NLB

M
where RLB = 5, 10, · · · 50 %

2 Find out maximal RTR ≡ NTR

NLB
where RTR = 10, 20, · · · 90 %

We also observe

RTR = 0 % to check the labeled set itself,
RTR = 100 % to check the result without the bias correction.
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Analysis detail Gradient boosting decision tree regression

Gradient boosting decision tree regression

We use ( ) via JuliaAI/MLJ.jl.

boosting stage = 40 empirically determined with L2-Loss plot.
depth of tree = 3, learning rate = 0.1, subsampling = 0.7

Same with Yoon et al., PRD 100 014504 (2019)

Statistical error estimation: Bootstrap resampling, NBS = 10, 000

Check P1 and P2 as in Yoon et al., PRD 100 014504 (2019)

1 P1: bias corrected ML prediction

ȲP1 =
1

NUL

∑
i∈{UL}

Y P
i +

1

NBC

∑
j∈{BC}

(
Yj − Y P

j

)
(1)

2 P2: weighted average of P1 and direct measured labeled set

ȲP2 =
NUL

M
ȲP1 +

NLB

M
Ȳ

(LB)
(2)

To improve the statistical precision
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Evaluation of ML estimation Two evaluations

Two evaluations of estimation results
Evaluation 1: Ȳ (central value) check (blue: original CG, red: ML)

(a) Score 2 (b) Score 1 (c) Score 0

Score Evaluation criteria (X = P1 or P2)

2 Both of ȲOrig. and ȲX agree with 1σ level.

1 Only one of ȲOrig. or ȲX comes into the other’s 1σ error.

0 ȲOrig. and ȲX do not agree with 1σ level each other.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Evaluation 2: σX /σOrig. check (σX : ML error, X = P1 or P2)

1 If a ML result got Score 2 at the Evaluation 1

2 and gave σX /σOrig. ≈ 1 at the Evaluation 2

ML estimation imitates the original CG result as well as possible.
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Evaluation of ML estimation An example

Example: Plaquette → TrM−3 estimation (P1, ID-0)

(a) Ȳ (central value) check (b) Magnitude of σP1/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

cannot find consistently
white region (score 2).

2 Eval. 2: σP1/σOrig. check
Roughly σP1 ≈ 1.5σOrig.

in RLB ≥ 30%, RTR ≤ 50%
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Evaluation of ML estimation An example

Example: Plaquette → TrM−3 estimation (P2, ID-0)

(a) Ȳ (central value) check (b) Magnitude of σP2/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

consistently white region
n RLB ≥ 30%, RTR ≤ 50%

2 Eval. 2: σP2/σOrig. check
Roughly σP2 ≲≲≲ 1.1σOrig.

in RLB ≥ 30%, RTR ≤ 50%
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Summary κ = 0.13575 (heaviest quark mass)

Preliminary results of ML estimation (1)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-0: κ = 0.13575 (heaviest quark mass)

ID-0 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {30, 50} {35, 40}
TrM−2 {30, 50} {35, 40} {25, 40}
TrM−3 {30, 50} {35, 40} {40, 40} {15, 70}
TrM−4 {45, 60} {45, 60} {40, 40} {35, 50} {25, 40}

In the Y = TrM−n estimation (n = 1, 2, 3),

RLB≥ 30% for plaquette, RLB≥ 35% for Polyakov loop

Not so good at Y = TrM−4 estimation: RLB≥ 45%
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Summary κ = 0.13580 (1st order phase transition)

Preliminary results of ML estimation (2)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-2: κ = 0.13580 (1st order phase transition)

ID-2 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {10, 80} {10, 80}
TrM−2 {10, 90} {10, 80} {10, 90}
TrM−3 {10, 90} {10, 70} {10, 80} {10, 90}
TrM−4 {40, 40} {40, 80} {40, 80} {40, 80} {40, 80}

In the Y = TrM−n estimation (n = 1, 2, 3),

RLB≥ 10% for plaquette and Polyakov loop

Not so good at Y = TrM−4 estimation: RLB≥ 40%
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Summary κ = 0.13585 (lightest quark mass)

Preliminary results of ML estimation (3)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-4: κ = 0.13585 (lightest quark mass)

ID-4 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {30, 40} {35, 40}
TrM−2 {30, 50} {40, 50} {30, 40}
TrM−3 N.A. N.A. N.A. N.A.

TrM−4 N.A. N.A. N.A. N.A. N.A.

N.A. Cannot find proper {RLB, RTR}.
In the Y = TrM−n estimation (n = 1, 2),

RLB≥ 30% for plaquette, RLB≥ 40% for Polyakov loop
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Summary and to-do list

Summary and to-do list

We checked the ability of ML estimation X → Y on

1 X = Plaquette/Polyakov loop, Y = TrM−n (n = 1, 2, 3, 4)

2 X = TrM−n, Y = TrM−m (n < m)

using ( ) via JuliaAI/MLJ.jl.

ML estimation works well with heavier quark mass (smaller κ).

Especially works well at the 1st order phase transition point.

ML estimation with X = Plaquette/Polyakov loop
works well if labeled set were ⪆ 30% of total set

In this preliminary analysis, we found that bias correction works well.

Expand the analysis with other gauge ensembles.

different lattice volume L3 × T , different lattice spacing a.

Further investigation and comparison with other linear regression
algorithms such as Lasso or Ridge.
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Summary Thank you

Thank you for your listening!
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Backup

Backup slides
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Backup κ = 0.13575 (heaviest quark mass)

Preliminary results of ML estimation (Backup, 1)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-0: κ = 0.13575 (heaviest quark mass)

ID-0 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {30, 50} {35, 40}
TrM−2 {30, 50} {35, 40} {25, 40}
TrM−3 {30, 50} {35, 40} {40, 40} {15, 70}
TrM−4 {45, 60} {45, 60} {40, 40} {35, 50} {25, 40}

In the Y = TrM−n estimation (n = 1, 2, 3),

RLB≥ 30% for plaquette, RLB≥ 35% for Polyakov loop

Not so good at Y = TrM−4 estimation: RLB≥ 45%
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Backup κ = 0.13577

Preliminary results of ML estimation (Backup, 2)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-1: κ = 0.13577

ID-1 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {30, 40} {35, 40}
TrM−2 {20, 50} {35, 40} {15, 40}
TrM−3 {25, 50} {35, 40} {30, 60} {20, 80}
TrM−4 {45, 40} {50, 40} {45, 50} {45, 50} {25, 50}

In the Y = TrM−n estimation (n = 1, 2, 3),

RLB≥ 30% for plaquette, RLB≥ 35% for Polyakov loop

Not so good at Y = TrM−4 estimation: RLB≥ 45%
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Backup κ = 0.13580 (1st order phase transition)

Preliminary results of ML estimation (Backup, 3)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-2: κ = 0.13580 (1st phase transition)

ID-2 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {10, 80} {10, 80}
TrM−2 {10, 90} {10, 80} {10, 90}
TrM−3 {10, 90} {10, 70} {10, 80} {10, 90}
TrM−4 {40, 40} {40, 80} {40, 80} {40, 80} {40, 80}

In the Y = TrM−n estimation (n = 1, 2, 3),

RLB≥ 10% for plaquette and Polyakov loop

Not so good at Y = TrM−4 estimation: RLB≥ 40%
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Backup κ = 0.13582

Preliminary results of ML estimation (Backup, 4)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-3: κ = 0.13582

ID-3 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {10, 60} {20, 80}
TrM−2 {10, 90} {10, 60} {10, 80}
TrM−3 {10, 70} {10, 50} {15, 60} {10, 90}
TrM−4 {40, 50} {40, 50} {40, 50} {40, 50} {40, 50}

In the Y = TrM−n estimation (n = 1, 2, 3),

RLB≥ 10% for plaquette and Polyakov loop

Not so good at Y = TrM−4 estimation: RLB≥ 40%
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Backup κ = 0.13585 (lightest quark mass)

Preliminary results of ML estimation (tBackup, 5)

For a ML trace estimation X → Y , (X: input, Y : target)

x-axis: X Plaquette, Polyakov loop, TrM−n (n = 1, 2, 3)

y-axis: Y TrM−n (n = 1, 2, 3, 4)

{RLB, RTR} = {30, 50} in RLB≥ 30% and RTR ≤ 50%.

P2 results of ID-4: κ = 0.13585 (lightest quark mass)

ID-4 Plaquette Polyakov loop TrM−1 TrM−2 TrM−3

TrM−1 {30, 40} {35, 40}
TrM−2 {30, 50} {40, 50} {30, 40}
TrM−3 N.A. N.A. N.A. N.A.

TrM−4 N.A. N.A. N.A. N.A. N.A.

N.A. Cannot find proper {RLB, RTR}.
In the Y = TrM−n estimation (n = 1, 2),

RLB≥ 30% for plaquette, RLB≥ 40% for Polyakov loop
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Backup approximate value of a

Fit result of Wilson flow scale parameter at zero T

0.6604

0.6608

0.6612

0.6616

0.6620

0.6624

0.116 0.117 0.118 0.119 0.12 0.121 0.122 0.123

f(mqa) = c0 + c1mqa

c0 = 0.6927(13)

c1 = −0.2620(110)

χ2/d.o.f. = 1.0530

√
t 0
/a

mqa

raw data T = 0
fit functionf(x)

interpolation T ̸= 0

a ≈ 0.22175 fm (κ = 0.13575)

a ≈ 0.22171 fm (κ = 0.13577)

a ≈ 0.22163 fm (κ = 0.13580)

a ≈ 0.22159 fm (κ = 0.13582)

a ≈ 0.22152 fm (κ = 0.13585)

V = 163 × 32, β = 1.60

Here, we use

1√
t0

= 1.347(30) GeV

BMW, JHEP 09 010 (2012).
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Backup approximate value of mPS

Fit result of pseudoscalar meson mass at zero T

1.81

1.82

1.83

1.84

1.85

1.86

1.87

0.116 0.117 0.118 0.119 0.12 0.121 0.122 0.123

f(mqa) = d1mqa+ d2 (mqa)
2

d1 = 21.77(47)

d2 = −53.64(393)

χ2/d.o.f. = 1.13

(m
P
S
a
)2

mqa

raw data T = 0
fit function f(x)

interpolation T ̸= 0

mPS ≈ 1.214 GeV (κ = 0.13575)

mPS ≈ 1.213 GeV (κ = 0.13577)

mPS ≈ 1.211 GeV (κ = 0.13580)

mPS ≈ 1.209 GeV (κ = 0.13582)

mPS ≈ 1.207 GeV (κ = 0.13585)

V = 163 × 32, β = 1.60

In summary, we have

mPS ≈ 1.21 GeV

in these 5 datasets.
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Backup Quark mass

Quark mass

We obtain κc (kappa critical) from

κc(g
2
0) = 0.125 + 0.003681192 g20 + 0.000117 (g20)

2

+ 0.000048 (g20)
3 − 0.000013 (g20)

4

where g20 =
2Nc

β
is the coupling constant.

With β = 1.60, we have κc ≈ 0.14041.

We obtain quark mass mqa with

mqa =
1

2

(
1

κ
− 1

κc

)
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Backup Computational gain

Computational gain
By the measurement logs of BQCD program, we have (Nconf = 5500)

ID κ Total CPU-time [hour] All CG [hour] CG for single TrM−n [hour]

0 0.13575 65.91 59.12 3.94

1 0.13577 65.97 59.15 3.94

2 0.13580 65.51 58.66 3.91

3 0.13582 64.44 57.56 3.84

4 0.13585 63.35 56.58 3.77

For single gauge conf., CG is called 150 times where Nsrc = 10.
For a single determination TrM−n, it takes ≈ 4 hours.

For GBDT regression on Julia code (with ordinary laptop/desktop),

Time for model training ≈ 3.17 seconds (99.71% compilation time)
Time for NBS = 10000 bootstrap resampling ≲ 1 minute

negligible comparing with CG time on supercomputer.

(ex. 1) ML estimation on TrM−1 → TrM−2 with 30% labeled set,

we save ≈ 35 % of CG time.

(ex. 2) ML estimation on Plaquette → TrM−3 with 30% labeled set,

we save ≈ 70 % of CG time.
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Backup Optimal boosting stage

Optimal boosting stage

x-axis: boosting stage (number of iteration)
y-axis: L2-loss for machine learning X → Y

(L2 loss) ≡
NTR∑
i=1

(
Yi − Y P

i

)2
optimal boosting stage ≈ 40
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Backup Visualization of decision tree

Visualization of decision tree

An example with X = TrM−1, Y = TrM−2 for X → Y learning

Example for a boost stage.

depth of tree = 3

number of leaf (green cell, Y = TrM−2) = 6
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Backup Optimal ratio of labeled/training set (backup)

Optimal ratio of labeled/training set (backup)

With M = NLB +NUL and NLB = NTR +NBC , let us assume that

NLB = 0.2M — labeled set is 20 % of total set.
NTR = 0.5NLB — training set is 50 % of labeled set.

Then the distribution of TR/BC/UL set is shown as, for example,

,

where x-axis corresponds to the gauge configuration index.

To reduce the computational cost fewest possible labeled set.

In bias correction set, Y as well as Y P is used to determine Ȳ .
We should grant sufficient statistics to bias correction set.

Need to find optimal ratio of labeled/training set!
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Backup Correlation Maps

Correlation Map of Observables (ID 0, ID 1)
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(a) κ = 0.13575, ID 0
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(b) κ = 0.13577, ID 1

We evaluate the correlation coefficients for Plaquette, Polyakov loop
and TrM−n (n = 1, 2, 3, 4)
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Backup Correlation Maps

Correlation Map of Observables (ID 2, ID 3)
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(c) κ = 0.13580, ID 2
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(d) κ = 0.13582, ID 3

We evaluate the correlation coefficients for Plaquette, Polyakov loop
and TrM−n (n = 1, 2, 3, 4)
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Backup Correlation Maps

Correlation Map of Observables (ID 4)
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(e) κ = 0.13585, ID 4

We evaluate the correlation coefficients for Plaquette, Polyakov loop
and TrM−n (n = 1, 2, 3, 4)

We observe weak correlation between TrM−4 and other observables.
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Backup Example on ID-0

Corr. Scatter of Plaquette → TrM−3 estimation (ID-0)

(a) {TR} (b) {BC} (c) {UL}

x-axis: Plaquette

y-axis: TrM−3

{TR}: Training set

{BC}: Bias correction set

{UL}: Unlabeled set

RLB = 30%, RTR = 10%

Blue circle: original data

Orange circle: ML estimation

Black vertical line:
average of plaquette

Yellow horizontal line:
average of TrM−3
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Backup Example on ID-0

Example: Plaquette → TrM−3 estimation (P1, ID-0)

(a) Ȳ (central value) check (b) Magnitude of σP1/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

cannot find consistently
white region (score 2).

2 Eval. 2: σP1/σOrig. check
Roughly σP1 ≈ 1.5σOrig.

in RLB ≥ 30%, RTR ≤ 50%
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Backup Example on ID-0

Example: Plaquette → TrM−3 estimation (P2, ID-0)

(a) Ȳ (central value) check (b) Magnitude of σP2/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

consistently white region
in RLB ≥ 30%, RTR ≤ 50%

2 Eval. 2: σP2/σOrig. check
Roughly σP2 ≲≲≲ 1.1σOrig.

in RLB ≥ 30%, RTR ≤ 50%
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Backup Example on ID-2

Corr. Scatter of Plaquette → TrM−3 estimation (ID-2)

(a) {TR} (b) {BC} (c) {UL}

x-axis: Plaquette

y-axis: TrM−3

{TR}: Training set

{BC}: Bias correction set

{UL}: Unlabeled set

RLB = 30%, RTR = 10%

Blue circle: original data

Orange circle: ML estimation

Black vertical line:
average of plaquette

Yellow horizontal line:
average of TrM−3
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Backup Example on ID-2

Example: Plaquette → TrM−3 estimation (P1, ID-2)

(a) Ȳ (central value) check (b) Magnitude of σP1/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

consistently white region
in RLB ≥ 10%, RTR ≤ 90%

2 Eval. 2: σP1/σOrig. check
Roughly σP1 ≈ 1.3σOrig.

in RLB ≥ 10%, RTR ≤ 70%
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Backup Example on ID-2

Example: Plaquette → TrM−3 estimation (P2, ID-2)

(a) Ȳ (central value) check (b) Magnitude of σP2/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

consistently white region
in RLB ≥ 5%, RTR ≤ 90%

2 Eval. 2: σP2/σOrig. check
Roughly σP2 ≲≲≲ σOrig. in

RLB ≥ 10%, RTR ≤ 70%
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Backup Example on ID-4

Corr. Scatter of Plaquette → TrM−3 estimation (ID-4)

(a) {TR} (b) {BC} (c) {UL}

x-axis: Plaquette

y-axis: TrM−3

{TR}: Training set

{BC}: Bias correction set

{UL}: Unlabeled set

RLB = 30%, RTR = 10%

Blue circle: original data

Orange circle: ML estimation

Black vertical line:
average of plaquette

Yellow horizontal line:
average of TrM−3
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Backup Example on ID-4

Example: Plaquette → TrM−3 estimation (P1, ID-4)

(a) Ȳ (central value) check (b) Magnitude of σP1/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

cannot find consistently
white region (score 2).

2 Eval. 2: σP1/σOrig. check
magnitude of σP1/σOrig.

is randomly distributed.
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Backup Example on ID-4

Example: Plaquette → TrM−3 estimation (P2, ID-4)

(a) Ȳ (central value) check (b) Magnitude of σP2/σOrig.

Ȳ score: white, orange, red
1 Eval. 1: central value check

cannot find consistently
white region (score 2).

2 Eval. 2: σP2/σOrig. check
magnitude of σP2/σOrig.

is randomly distributed.
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