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ABOUT TENSOR RENORMALIZATION GROUP
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Tensor Renormaliza.on Group = Numerical Real space Renormaliza.on Group 

Approximate by Singular Value Decomposition (SVD)

Renormalize

→A candidate for overcoming sign problems in LQCD

SVD

TRG is applicable for sign problem region, but has large cost at higher dimensions

[M. Levin and C. P. Nave, (2007).]
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OTHER APPROACHES TO HIGHER DIMENSIONS
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HOTRG ATRG Triad TRG MDTRG Triad rep.

cost

Fundamental tensor

methods

• Exact Contraction • Bond-swapping 
via RSVD

• Exact Contraction

• Triad
• Contraction via 

RSVD

• Decomposition of 
unit-cell tensor

• Triad
• Internal line 

oversampling
• Contraction via 

RSVD

[D. Kadoh and K. Nakayama, 
(2019).]

[D. Adachi, T. Okubo, 
and S. Todo, (2020).]

[Xie et al, (2012).] [K. Nakayama, (2023).]

Our motivation is to search for a more efficient algorithm for four-dimensional theories.
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Two reason for the cost reduction
ü The fundamental tensor has d+1 legs.
ü By performing bond swapping, the number of isometries is reduced by 1/2.

COST REDUCTION FOR HIGHER DIMENSIONS –ATRG

The cost of ATRG is !   (HOTRG was              ) RSVD is used in the bond-swapping step

JULY 29, 2024 4

[D. Adachi, T. Okubo, and S. Todo, (2020).]

Unit-Cell
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Difference from ATRG is
ü Using RSVD with QR iteration in contraction step (approximated SVD scheme)
ü Oversampling of internal line
ü Decomposition of Unit-cell tensor

MDTRG is more accurate than Triad TRG , almost same accuracy of HOTRG 

COST REDUCTION FOR HIGHER DIMENSIONS –MDTRG TRIAD REP.

JULY 29, 2024 5

MDTRG-Triad rep. is improved version of Triad TRG, which cost is            

[K. Nakayama, (2023).]

Unit-Cell
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CONSIDERATION ON VARIOUS METHOD IN 4D
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HOTRG ATRG MDTRG Triad rep.

cost

Accuracy 🙂 😐 ? 

Problem

• Large cost, difficult 
to enlarge 

• Large cost
• The convergence of 

free energy is not 
as good in the 2D 
cases.

• Investigation is 
needed

[D. Adachi, T. Okubo, 
and S. Todo, (2020).][Xie et al, (2012).] [K. Nakayama, (2023).]

• In 4D systems, it is Trade-off between accuracy and computation cost

😰 🙂 😁
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ATRG Triad-MDTRG

Cost in 4D

methods

• Bond-swapping 
via RSVD

• Exact Contraction
• 3 isometry in the 

contraction step

• Decomp. of Unit-
cell tensor

• Triad
• Internal line 

oversampling
• Contraction via 

RSVD

PROPOSAL

JULY 29, 2024 7

[D. Adachi, T. Okubo, 
and S. Todo, (2020).]

[K. Nakayama, (2023).]

Triad-ATRG ?

We aim for faster algorithms!
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Research
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TRIAD REPRESENTATION OF ATRG

JULY 29, 2024 9

• We consider triad representation of ATRG 
• Consider HOSVD of unit cell tensor                            after the Bond swapping
• SVD of.            and            provides SVD of     thanks to canonical form
• Make triad representation in the same manner as MDTRG
• Triad legs are oversampled

[S. Akiyama, phd, 2022.]

HOSVD



Applying the Triad network representation to four-dimensional ATRG method

/36

/23

TRIAD REPRESENTATION OF ATRG

JULY 29, 2024 10

• However, in four dimensions, the order of computational cost does not change even if not 
all tensors are converted into triad form. Therefore, we use a form with as few 
decompositions as possible.

• We obtain 4 legs tensors                                                  and 3 legs tensors                            
(we call this form as triad rep.) oversampled
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TRIAD REPRESENTATION OF ATRG

JULY 29, 2024 11

• Computational cost of this procedure is                (If we use RSVD,                )
• All decomposition in this procedure are SVD of the Unit-Cell Tensor
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MAKING SQUEEZERS

JULY 29, 2024 12

• We derive squeezers in the same manner of ATRG
• since     is not  canonical form anymore, we must decompose
• We can calculate separately by introducing theGramm-matrix of.              and          

[S. Akiyama, phd, 2022.]
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MAKING SQUEEZERS

JULY 29, 2024 13

• Computational cost of this procedure is
• All decomposition in this procedure are SVDs of                            as in the improved ATRG 

[S. Akiyama, phd, 2022.]

[D. Adachi, T. Okubo, and S. Todo, (2022).]
[S. Iino, S. Morita, and N. Kawashima, (2019).]
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CONTRACTION STEP

JULY 29, 2024 14

• Thanks to the Triad form, Computational cost is reduced to                      , smaller than 
ATRG (             )

• We do not use RSVD since we already used it once in the bond-swapping step
Bottleneck
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SUMMARY OF COMPUTATIONAL COST

JULY 29, 2024 15

Bottleneck
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Numerical results on 4D Ising model



Applying the Triad network representation to four-dimensional ATRG method

/36

/23

FREE ENERGY

JULY 29, 2024 17

• We investigate the convergence of free energy at 4D Ising model in r=7, L=1024,T=6.65035
• The results are in high agreement with ATRG

ATRG Triad-ATRG

46 -4.9364809 -4.9364227

47 -4.9365041 -4.9364402

48 -4.9365426 -4.9364745

49 -4.9365964 -4.9365523

50 -4.9366373 -4.9365787

51 -4.9366456 -4.9365820

52 -4.9366769 -4.9366039

53 -4.9366908 -4.9366297

54 -4.9367035 -4.9366392
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Difference is only 0.0019%

HOTRG(D=13): 
[S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]
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COMPUTATIONAL TIME ON A CPU

JULY 29, 2024 18

• We investigate the computational time in r=7 using a single CPU calculation
• Scaling of the computational time is  
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COMPUTATIONAL TIME ON GPUS

JULY 29, 2024 19

• We investigate the computational time in r=7  ,L=1024 by 2 GPU parallelized calculation
• Scaling of the computational time improved significantly

We have used Tesla V100 
16GB PCIE✖2

https://www.elsa-jp.co.jp/wp-content/uploads/2019/03/nvidia_tesla_v100_3qtr.png

Triad-ATRG could be powerful tool 
for GPU computations
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HOTRG(D=13): 
[S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]

To determine the transition point, we evaluate 
the following value at each coarse-graining step.

PHASE TRANSITION POINT

[Z.-C. Gu and X.-G. Wen, (2009).]

If X=2, the system is in an ordered phase, and if X=1, it is in a disordered phase
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PHASE TRANSITION POINT

JULY 29, 2024 21

Difference from the ATRG results at 
χ=54 is ~0.1% for r=7, and ~0.04% for 
r=10 

*results of ATRG has not converged well

HOTRG(χ=13): 
[S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, (2019).]

Monte-Carlo:
[P. H. Lundow and K. Markström, (2023).]
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Further investigation for larger      is needed
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SUMMARY AND FUTURE WORKS

• The results of Triad-ATRG are highly consistent with the ATRG results

• Triad-ATRG significantly improves the computational cost on CPU and GPUs

Future works

• Investigate the accuracy of internal energy

• Calculate in more large 

• Apply to other 4D systems

JULY 29, 2024 22

Triad ATRG would be a powerful tool for 4D systems
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END
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ABOUT TENSOR NETWORK

JULY 29, 2024 24

The tensor network method was developed in condensed matter physics (Hamiltonian formalism)
For Quantum Field Theory, we use Lagrangian approach

Hamiltonian Lagrangian

Target Many body system Path integral

Method Variational Renormalization

Physics Ground state
Real time evolution

Partial function
Green function

We use TRG for higher dimensions
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ABOUT SUMMATION RULES

JULY 29, 2024 25

Tensor is multidimensional array!
We use convention of tensor network diagrams below.

Summation rule

Tensor Network = Diagram representation of tensor contraction 
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COARSE GRAINING AND SINGULAR VALUE DECOMPOSITION

JULY 29, 2024 26

Singular values have important information of the matrix. (next page)
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BEST LOW RANK APPROXIMATION

JULY 29, 2024 27

SVD is the best approximation for matrix

Truncated-SVD,(RSVD,Arnordi,…)
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RANDOMIZED SVD

JULY 29, 2024 28

RSVD is powerful tool in the TRG calculations

[N. Halko, P.-G. Martinsson, and J. A. Tropp, (2010).]
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ABOUT TENSOR RENORMALIZATION GROUP

JULY 29, 2024 29

Tensor Renormalization Group = Numerical Real space Renormalization Group 

Approximate Z by Singular Value Decomposition (SVD)

Renormalize

Partial function can be expressed in Tensor network form if interaction is

SVD

TRG is applicable for sign problem region, but has large cost at higher dimensions
Tensor Renormaliza.on Group (TRG) method has no sign problems ! 

[M. Levin and C. P. Nave, (2007).]
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TENSOR RENORMALIZATION GROUP

JULY 29, 2024 30

Applying SVD, we decompose subnetwork, and contract inner bonds

Rotating the system, we get new network, but the number of tensors became 1/4

→ Renormalization , total computational cost is 

[M. Levin and C. P. Nave, (2007).]
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HOTRG

JULY 29, 2024 31

For higher dimensions, HOTRG renormalize each direction separately. 

We multiply truncated unitary matrix from each side.

U is obtained by SVD of subnetwork         ; this is optimal for y direction.

contract

isometry

[Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, (2012).]
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HOTRG PROCEDURE

JULY 29, 2024 32

Renormalize each direction anisotropically
Applicable to 3d,4d systems

• Easy to take thermodynamic limit (                      )

• No Sign Problem

• Easy to treat Fermion

https://smorita.github.io/TN_animation/
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HOTRG

JULY 29, 2024 33

For 3d or higher dimensions, this procedure can be also done by separatory 

We multiply truncated unitary matrices                                    from x and y axis.

U is obtained by Eigen Value Decomposition of subnetwork 

contract

[Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, (2012).]
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HOTRG

JULY 29, 2024 34

HOTRG can be applied to any dimensional systems, but it has large computational cost.
HOTRG has                  for contraction step, it is too large for 4d systems like QCD

bottleneck

[Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, (2012).]
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CONSTRACT TENSOR REPRESENTATION

JULY 29, 2024 35

Partial function can be expressed in Tensor network form if interaction is local

We can constract Tensor Network Representations of the spin system as follows.

Consider following Hamiltonian

Nontrivial??
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CONSTRACT TENSOR REPRESENTATION

JULY 29, 2024 36

Let                                                                 
SVD
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COST REDUCTION FOR HIGHER DIMENSIONS –ATRG

JULY 29, 2024 37

In d-dimensional system, The tensor        has 2d legs, which results in high memory cost!

6 legs

One way to reduce cost is the ATRG method. -Adachi et al (2020)
1. Decompose a fundamental tensor to d+1 legs.
2. Decompose                          with the bond swapping  
3. Using isometry (called squeezer), make            and next  

[D. Adachi, T. Okubo, and S. Todo, (2020).]
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Difference from Triad TRG is
ü Oversampling of internal line
ü Using RSVD with QR iteration in contraction step (approximated SVD scheme)
ü Decomposition of Unit-cell tensor

MDTRG is more accurate than Triad TRG , same accuracy of HOTRG 

COST REDUCTION FOR HIGHER DIMENSIONS –MDTRG

JULY 29, 2024 38

MDTRG-Triad rep. is improved version of Triad TRG, which cost is            
[K. Nakayama, (2023).]
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RSVD IN 4D SYSTEM

JULY 29, 2024 39

• The numerical instability caused by RSVD is serious in four dimensions
• In ATRG, is sufficient in Bond swapping step, total cost is  
• If we take                     in MDTRG, the cost is               , difficult to enlarge    and    simultaneously

[H. Oba, (2019).]

RSVD

Is there any efficient triad algorithms for 4D system ?
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Two reason of cost reduction
ü Fundamental tensor has 3 legs
ü Using RSVD in contraction step

But Triad TRG is less accurate than HOTRG, due to the additional decomposion

COST REDUCTION FOR HIGHER DIMENSIONS –TRIAD TRG

JULY 29, 2024 40

Cost of Triad TRG is.              !
[D. Kadoh and K. Nakayama, (2019).]
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COMPUTATIONAL TIME ON GPUS

JULY 29, 2024 41

• We investigate the computational time in r=7  ,L=1024by 2 GPU parallelized calculation
• Scaling of the computational time improved significantly

We have used Tesla V100 
16GB PCIE✖2

https://www.elsa-jp.co.jp/wp-content/uploads/2019/03/nvidia_tesla_v100_3qtr.png30 35 40 45 50 55
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HOTRG

JULY 29, 2024 42

HOTRG decomposes  subnetwork          unlike original TRG, which decomposes 

Decomposing large network reduces the systematic error!

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A

(a)
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V(n)

V(n)
M(n)

FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with
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FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E

(n)
mnjiuk from E

(n+1)
lrf bud in three

dimensions.

045139-4

HOTRG has small error from the exact solution.
-Xie et al (2012)
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BEST LOW RANK APPROXIMATION

JULY 29, 2024 43
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TENSOR RENORMALIZATION GROUP

JULY 29, 2024 44

Consider Network                                   (subnetwork)

Apply SVD for Tensor (χ is called the bond dimension, often take 50~100)

Apply for another pair of indices, we can decompose T below
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BEST LOW RANK APPROXIMATION

JULY 29, 2024 45

SVD is the best approximation for matrix. It compress the necessary information of the matrix.

Large singular values is dominant for the norm of the matrix
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BEST LOW RANK APPROXIMATION

JULY 29, 2024 46

SVD is the best approximation for matrix. It compress the necessary information of the matrix.

28 IEEE  TRANSACTIONS  ON ACOUSTICS, SPEECH, AND SIGNAL  PROCESSING,  FEBRUARY 1976 

where the  matrix  norm is the  Euclidean  measure, tr [GI ’ [GI = 
IlGII 2 .  The  motivation  for  utilizing  the SVD expansion is 
that hopefully small K provides a good representation  of 
[GI and  storage  requirements  drop  from N 2  to K ( 2 N +  1) 
computer  words (i.e., 2N words for  two eigenvectors  and 1 
word  for  the eigenvalue). The  truncation  error of (12) is mini- 
mized  by the  monotonic ordering  of  the singular values. In 
addition  the  expansion  of [GI into its eigenimages implies 
there is no  other  orthonormal expansion  with as efficient an 
energy  representation  in as  few a  number  of  coefficients.  In 
order to more  fully  understand  the  effect of  the lower  energy 
eigenimages, the  condition  number  C([G])  of  the  matrix 
[GI becomes  useful, where 

The  condition  number  for  the images in  Fig.  2  (the Mandrill 
and  Tiffany) is C( [GI ) z 1 O4 representing  a  reasonably  stable 
and  nonsingular  matrix.  The singular value plot  of  the  baboon 
is shown in Fig. l(b) with  the original and  three  partial  sums 
([G,] , [GI1 1 ,  and [G31]) presented  in Fig. 3(a).  Fig. 3(b) 
presents the partial  sums  for  Tiffany. 

At this  point  it is instructive to discuss the  difference  between 
the SVD of an image matrix [GI and  the Karhunen-Lo6ve 
decomposition  of  the same image matrix.  First,  the SVD 
technique is deterministically  defined  and  expands [GI in  an 
N sum  of eigenimages uniquely  determined  by [GI. The 
Karhunen-LoPve technique is statistically  defined  and  ex- 
pands [GI in an N 2  sum  of  orthogonal images determined by 
the covariance matrix which describes  the  statistical process 
from  which [GI  is hypothetically  generated.  Second,  the 
orthogonal images of the Karhunen-Lolve process are known 
a priori once  the  covariance  matrix is defined  whereas  the 
eigenimages defined by  the SVD of [GI are completely  un- 
known  until [GI  is available.  Statistically  speaking, on the 
average the Karhunen-Lolve  expansion is best  in  a  mean- 
square  truncation sense (i.e., & {  11 [GI - [GK] 11)). Determin- 
istically  speaking  the SVD expansion is best  in  a  least-squares 
truncation sense (Le., J/[G] - [GK] 11). 

IMAGE ENHANCEMENT 
A first  inclination use of SVD in processing of images is the 

introduction of generalized filtering  concepts in which various 
weight functions are applied to the eigenimages to provide an 
enhancement.  The  motivation  for  such  a  procedure  might be 
the  fact  that  the basis images are perfectly  matched to  [GI, 
hence  enhancing  certain eigenimages will emphasize  specific 
structure  inherent to [GI alone. Fig. 4 presents  examples of 
two particular  filtering  methods to demonstrate  the  principle. 
The  first method is a  linear  weighting 

and  the  second is a  nonlinear weighting (a processing) such 

(ii) 

(iii) 

(ii) 

Fig. 3. (a)  Selected  partial  sums  of SVD expansions  of  the Mandrill 
Baboon. (i) Original. (ii) Gg. (iii) G l l .  (iv) G31. (b) Singular  value 
decomposition  of  Tiffany. (i) Original. (ii) First 31 components. 
(iii) First 6 components. (iv) First 11 components. 

that 

The  particular weighting functions chosen in Fig. qa) ,  de- 
scribed  by  (14), are used to enhance  the higher zero-crossing 
(frequency)  aspects  of the image. The process described by 
(15) can be  used as both  a “low-pass”  and “high-pass’’ non- 
linear  filter. When a > 1 the larger singular valued eigenimages 

=

ANDREWS AND  PATTERSON:  SINGULAR  VALUE DECOMPOSITIONS 27 

rank 1 matrices 

1 \ F ’  
B - 1  

(b) 
Fig. 1. Matrix  expansion  in  outer  products.  (a)  Singular  value  de- 

composition  of [GI. (b)  Monotonically  ordered  singular  value map. 
(See  image  of  Fig. 2. The  logarithm is used for  plotting convenience. 
Underlined  variables  in  figures  are  boldface  in  text.) 
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image should then be quantized to a  sufficiently  fine  number 
of brightness values to allow minimal  quantization noise in 
this  process. Because the sampling and  quantization process 
is not  of great  concern to us in this  paper, we will simply  de- 
scribe it by  the  operator S Q { g } .  The  result  of  the sampling 
and  quantization will be an array  of positive numbers  which 
we  will refer to as the  matrix [GI . 

Now that our image g(x,y)  is represented as a  matrix of 
nonnegative  brightness  entries [GI, we can return to the 
SVD discussion of  above.  Consequently, an  image  [GI may 
be decomposed into  a sum of rank  one  matrices (images) 
which are termed  herein as eigenimages (uiuf). From (1) we 
see that  the image  [GI is “diagonalized” by the  [U]  and 
[VI matrices,  and  from  (2)  and (3), the  [U]  and [VI matrices 
are the row and  column  eigenmatrices  of [GI [GIt and 
[GI ‘[GI, respectively. Fig. 2(a) illustrates  the  techniques 
on  a  128 X 128 image known as the “Mandrill baboon.” 
The  figure  presents,  componentwise,  absolute-value versions 
of  the  first,  sixth,  and  thirty-first  outer  product  matrices  ob- 
tained  from the decomposition  of  the  original.  It  should be 
noted  that  the basis set of eigenimages (of which  three are 
presented  in  the  figure) are matched  to  the particular image 
[GI (i.e., the  baboon) and  contain both high-  and  low-spatial 
frequencies. Fig. 2(b) presents  the same sequence as Fig. 2(a) 
but  for  a second image.’ This  image,  known as “Tiffany,” 
has less horizontal-vertical  structure  but  still  demonstrates 
the  matching of  the eigenimages to the original [GI matrix 
as before.  In  theory  the  expansion  of  an image in terms  of  its 
eigenimages  is a  straightforward process. However, computa- 
tionally  the task is not  that simple.  Specifically it is difficult 
to determine R ,  the  rank of [GI when the  computer provides 

’An observant  reviewer  points  out  that  the  horizontal-vertical  struc- 
ture  of  the  baboon may be a  misleading  example for  the SVD technique. 
Therefore,  the  second  sequence  of images are  included in Figs. 2 and 3. 

(ii) 

(ii) 

(iii) 

Fig. 2. (a)  Selected  singular  value  outer  product  eigenimages  of  the 
Madrill Baboon.  (i)  Original. (ii) ului .  (iii) u6ug. (iv) u31.uf31. 
(b)  Tiffany singular  value  decomposition  selected outer  product elgen- 
images. (i) Original. (ii) First  outer  product. (iii) Sixth  outer  product. 
(iv)  Thirty-first  outer  product. 

singular values which are not zero but are quite small (i.e., 
lo-“). If an approximate  representation  of  the  matrix [GI 
is formed  by  truncation,  then 

K 
[C,] = ? y u i v ;  

i=l 

and  the  mean-square  truncation  error  becomes 
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singular values which are not zero but are quite small (i.e., 
lo-“). If an approximate  representation  of  the  matrix [GI 
is formed  by  truncation,  then 

K 
[C,] = ? y u i v ;  

i=l 

and  the  mean-square  truncation  error  becomes 
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where the  matrix  norm is the  Euclidean  measure, tr [GI ’ [GI = 
IlGII 2 .  The  motivation  for  utilizing  the SVD expansion is 
that hopefully small K provides a good representation  of 
[GI and  storage  requirements  drop  from N 2  to K ( 2 N +  1) 
computer  words (i.e., 2N words for  two eigenvectors  and 1 
word  for  the eigenvalue). The  truncation  error of (12) is mini- 
mized  by the  monotonic ordering  of  the singular values. In 
addition  the  expansion  of [GI into its eigenimages implies 
there is no  other  orthonormal expansion  with as efficient an 
energy  representation  in as  few a  number  of  coefficients.  In 
order to more  fully  understand  the  effect of  the lower  energy 
eigenimages, the  condition  number  C([G])  of  the  matrix 
[GI becomes  useful, where 

The  condition  number  for  the images in  Fig.  2  (the Mandrill 
and  Tiffany) is C( [GI ) z 1 O4 representing  a  reasonably  stable 
and  nonsingular  matrix.  The singular value plot  of  the  baboon 
is shown in Fig. l(b) with  the original and  three  partial  sums 
([G,] , [GI1 1 ,  and [G31]) presented  in Fig. 3(a).  Fig. 3(b) 
presents the partial  sums  for  Tiffany. 

At this  point  it is instructive to discuss the  difference  between 
the SVD of an image matrix [GI and  the Karhunen-Lo6ve 
decomposition  of  the same image matrix.  First,  the SVD 
technique is deterministically  defined  and  expands [GI in  an 
N sum  of eigenimages uniquely  determined  by [GI. The 
Karhunen-LoPve technique is statistically  defined  and  ex- 
pands [GI in an N 2  sum  of  orthogonal images determined by 
the covariance matrix which describes  the  statistical process 
from  which [GI  is hypothetically  generated.  Second,  the 
orthogonal images of the Karhunen-Lolve process are known 
a priori once  the  covariance  matrix is defined  whereas  the 
eigenimages defined by  the SVD of [GI are completely  un- 
known  until [GI  is available.  Statistically  speaking, on the 
average the Karhunen-Lolve  expansion is best  in  a  mean- 
square  truncation sense (i.e., & {  11 [GI - [GK] 11)). Determin- 
istically  speaking  the SVD expansion is best  in  a  least-squares 
truncation sense (Le., J/[G] - [GK] 11). 
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scribed  by  (14), are used to enhance  the higher zero-crossing 
(frequency)  aspects  of the image. The process described by 
(15) can be  used as both  a “low-pass”  and “high-pass’’ non- 
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• Image data＝information as a matrix (N x N matrix) is 
compressed by SVD（Andrews-Patterson, IEEE1976）

Using SVD for tensor contraction!
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TENSOR RENORMALIZATION GROUP
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Consider Network                                   (subnetwork)

Apply SVD for Tensor (D is called the bond dimension, onen take 50~100)

Apply for another pair of indices, we can decompose T below
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BOND-SWAPPING
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RSVD

Two reason of cost reduction
ü Fundamental tensor has less legs
ü By doing bond swapping, the # of isometry is reduced to ½

[D. Adachi, T. Okubo, and S. Todo, (2020).]


