Exact lattice chiral symmetry

Aleksey Cherman University of Minnesota

Based on arXiv:2370.17539 with

Evan Berkowitz @ IKP, Julich

Theo Jacobson @ UCLA

Massless fermions and their troubles

- Challenge: discretize massless fermions while preserving their internal symmetries.
 - Nielsen-Ninomiya theorem: can't discretize Dirac operator $\mathcal{D} = \gamma^{\mu} \partial_{\mu}$ while preserving
 - 1. Continuity in p_{μ} Locality
 - 2. $\mathcal{D}(p) = \gamma^{\mu} p_{\mu}$ for $a | p | \ll 1$ Free fermion as $a \to 0$
 - 3. \mathscr{D} invertible except at $|p| \rightarrow 0$ No doublers
 - 4. $\{\Gamma, \mathcal{D}\} = 0$ Chiral symmetry
 - Wilson, staggered, and overlap/domain wall discretizations give up various combinations of these features.

Bosonize, then discretize

The Idea

Berkowitz, AC, Jacobson, 2023

DeMarco, Lake, Wen, 2023 Morikawa, **Onoda**, Suzuki, (Friday)

• Discretizing $\gamma^{\mu}D_{\mu}$ is hard, but we actually **need** det $(\gamma^{\mu}D_{\mu})$:

$$Z = \int da_{\mu} d\psi d\bar{\psi} e^{-S[a_{\mu},\psi,\bar{\psi}]}$$
$$= \int da_{\mu} \det(\gamma^{\mu} D_{\mu}) e^{-S[a_{\mu}]}$$

- There can be two expressions for $det(\gamma^{\mu}D_{\mu})$: one involving $\bar{\psi}, \psi$, and a `dual' expression from e.g. bosonization.
 - Discretizing the bosonized expression turns out to be easier than discretizing $\gamma^{\mu}D_{\mu}!$
- Gives lattice gauge theories with **exact** chiral symmetry.

The punchlines

- Today I'll explain exact lattice chiral symmetry in 2d $N_f = 1$ charge Q QED.
- Results generalize to many other U(1) gauge theory in 2d, including chiral gauge theories.
- Other generalizations:
 - Seems likely d > 2 is possible, work in progress!
 - Non-Abelian chiral symmetry much harder for now.

Chiral symmetry in charge Q 2d QED

$$\mathcal{L} = \frac{1}{4g^2} f_{\mu\nu}^2 + \bar{\psi} \left(\gamma^{\mu} \partial_{\mu} - iQa_{\mu} \right) \psi$$

• ABJ anomaly \Rightarrow axial current is not conserved.

$$\partial_{\mu} j_A^{\mu} = Q q_{\text{top}}(a_{\mu}), \ q_{\text{top}}(a_{\mu}) = \frac{1}{2\pi} \epsilon^{\mu\nu} f_{\mu\nu}$$

• $q_{top}(a_{\mu}) =$ topological charge density of the gauge field. $\Delta Q_A = 2Q \int d^2x \, q_{top}(a_{\mu}) = 2Q\mathcal{I} \in 2Q\mathbb{Z}$

• So $U(1)_A \to \mathbb{Z}_{2Q}$, but $\mathbb{Z}_2 \simeq (-1)^F \subset \mathbb{Z}_{2Q}$ is gauged, so

$$G_A = \frac{\mathbb{Z}_{2Q}}{\mathbb{Z}_2} \simeq \mathbb{Z}_Q$$

Bosonization of a 1+1d Dirac fermion

$$\mathscr{L}_{\psi} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$$

with gauged $(-1)^{F}$

Compact boson
$$\varphi$$

 $\mathscr{L}_{\varphi} = \frac{1}{8\pi} (\partial_{\mu} \varphi)^2$

(In QED $(-1)^F$ is part of the U(1) gauge group)

- Evan Berkowitz (**next talk**!) will explain how to simulate the compact boson while preserving anomalies
- Gauging $U(1)_V$ should give an ABJ anomaly reducing $U(1)_A \to \mathbb{Z}_Q$.
- Challenge: seeing ABJ anomaly requires e.g. exact instanton number quantization, among other things.
 - Topological charges usually not manifest on lattice!

Compact boson review

$$\mathscr{L} = \frac{1}{8\pi} (d\varphi)^2, \ \varphi \simeq \varphi + 2\pi$$

• Axial current:

$$j_A = \frac{1}{4\pi} d\varphi = \frac{1}{4\pi} \partial_\mu \varphi dx^\mu$$

• Axial charge:

$$Q_A(C) = \int_C \star j_A = \frac{1}{4\pi} \int_C \star d\varphi$$

 φ shift charge

Conserved due to e.o.m.

$$j_V = \frac{-1}{2\pi} \star d\varphi = \frac{-1}{2\pi} \epsilon^{\mu\nu} \partial_\nu \varphi dx_\mu$$

• Vector charge:

$$Q_V(C) = \int_C \star j_V = \frac{1}{2\pi} \int_C d\varphi$$

 φ winding charge

Conserved by Bianchi identity

Anomalies on the lattice

- Widespread historical view:
 - "Ultra-local lattice models can't capture anomalies."
- However, by now it is now well-known (by those who know it) that this isn't right:
 - Anomalies can be preserved on lattice, and even scalars can have anomalies.
 - Can preserve topological symmetries on lattice.

Sulejmanpasic, Gattringer; Shao, Seiberg, Gorantla; ... 2019 - now

Cond-mat, hep-lat examples and antecedents: Catterall et al (Friday), Singh+et al (Tuesday), Lieb+Shutz+Mattis, Kitaev, Kapustin+Thorngren, ...

The lattice

- Work on a square lattice with sites s, links ℓ , plaquettes p, and cells on dual lattice $\tilde{s}, \tilde{\ell}, \tilde{p}$.
- "Hodge star" map from lattice to dual lattice
 * s = p, * l = l, * p = s
 (d\u03cbc)_{c^{r+1}} = \sum_{c^r\u03cbc} \u03cbc_{c^r\u03cbc}, so that (d\u03cbc)_\u03cbla = \u03cbc_{s+a\u03cbla} \u03cbc_s, d^2 = 0.

Modified Villain formulation

Villain 1970s; Gross, Klebanov 1990s; Cheng, Sulejmanpasic, Gattringer, Gorantla, Fazzi, Lam, Seiberg, Shao,... 2019 - now

• $U(1) \simeq \mathbb{R}/(2\pi\mathbb{Z})$, and it turns out a `more redundant' formulation with \mathbb{Z} gauge field helps preserve global symmetries.

- Continuum $\varphi(x) \Rightarrow \{\varphi_{\tilde{s}} \in \mathbb{R}, \chi_{s} \in \mathbb{R}, n_{\tilde{\ell}} \in \mathbb{Z}\}$
- Continuum $a_{\mu} \Rightarrow \{a_{\ell} \in \mathbb{R}, r_{p} \in \mathbb{Z}\}$

Lattice action for 2d QED

$$S = \frac{\beta}{2} \left[(da)_p - 2\pi r_p \right]^2 + \frac{\kappa}{2} \left[(d\varphi)_{\tilde{\ell}} - 2\pi n_{\tilde{\ell}} \right]^2$$
$$- i\chi_s (dn)_{\star s} + \frac{iQ}{2\pi} \varphi_{\star p} \left[(da)_p - 2\pi r_p \right] - iQa_\ell n_{\star \ell}$$

- χ_s integral sets $(dn)_{\tilde{p}} = (d \star j_V)_{\tilde{p}} = 0$. Q_V is conserved!
- Gauge transformations:

$$\alpha_s \in \mathbb{R}, m_\ell, k_{\tilde{s}}, h_{\tilde{s}} \text{ are all } \in \mathbb{Z}.$$

• Short calculation: despite appearance of "raw" $a_{\ell}, n_{\ell}, \chi_s$ fields in S, $\exp(-S)$ is gauge invariant!

Exact chiral symmetry

$$S = \frac{\beta}{2} \left[(da)_p - 2\pi r_p \right]^2 + \frac{\kappa}{2} \left[(d\varphi)_{\tilde{\ell}} - 2\pi n_{\tilde{\ell}} \right]^2$$
$$- i\chi_s (dn)_{\star s} + \frac{iQ}{2\pi} \varphi_{\star p} \left[(da)_p - 2\pi r_p \right] - iQa_\ell n_{\star \ell}$$

- Quantization of Q_{top} on the lattice implies only $\varphi_{\tilde{s}} \rightarrow \varphi_{\tilde{s}} + \frac{2\pi k}{Q}, k = 1, ..., Q - 1$ is a symmetry. $\Delta S = \sum_{p \in \text{spacetime}} \frac{iQ}{2\pi} \left[(da)_p - 2\pi r_p \right] \frac{2\pi k}{Q}$ $= -i2\pi k \sum_p r_p \in 2\pi i \mathbb{Z}$
- Chiral symmetry acts ultra-locally, and ABJ anomaly is reproduced at finite lattice spacing.

ink Glo

Positives and negatives

• Negatives:

- Only have results only in 1+1d for now.
- Only works for Abelian gauge theories for now.
- ...
- Positives:
 - All symmetries act ultra-locally.
 - Capture anomalies on lattice for continuous and discrete symmetries, in gauge theories with massless fermions.
 - Discretization here is very different from usual ones.
 - Nielsen-Ninomiya theorem does not have an asterisk saying it doesn't apply to 1+1d Abelian models!
 - New evasion of the theorem seems interesting...

Is the construction practical?

 Some of you may be thinking I hid a really big `negative': an apparently-horrible sign problem!

$$S_{\text{lat}} = \frac{\kappa}{2} \left[(d\varphi)_{\tilde{\ell}} - 2\pi n_{\tilde{\ell}} \right]^2 + \frac{\beta}{2} \left[(da)_p - 2\pi r_p \right]^2$$
$$- \frac{i}{\chi_s} (dn)_{\star s} + \frac{i}{2\pi} \frac{Q}{2\pi} \left[(da)_p - 2\pi r_p \right] \varphi_{\star p}$$
$$- \frac{i}{Q} a_\ell n_{\star \ell}$$

- Evan will say more about how to evade sign problems in this type of model.
- They are just mirages, disappearing on closer inspection.

drawception.com

Sign problem? What sign problem?

• Integrating over a_{ℓ} and r_p gives yet another dual action:

$$\begin{split} S_{\text{dual}} &= \frac{\kappa}{2} \left[(d\varphi)_{\tilde{\ell}} - \frac{2\pi}{Q} (dt)_{\tilde{\ell}} \right]^2 \\ &+ \frac{1}{2\beta} \left(\frac{Q}{2\pi} \right)^2 \left(\varphi_{\tilde{s}} - \frac{2\pi}{Q} t_{\tilde{s}} \right)^2 - \frac{2\pi i}{Q} t_{\star p} (du)_p \end{split}$$

- $t_s, u_{\ell} \in \mathbb{Z}$ appear during duality from S to S_{dual} , and integral over u_{ℓ} forces $(dt)_{\star \ell} = 0 \mod Q$.
 - Can easily maintain this condition when doing Monte Carlo field updates. No sign problem in practice!
- S_{dual} contains precisely the expected `Schwinger boson'!

Chiral gauge theory

Berkowitz, AC, Jacobson, 2023

See also Onogi (Tuesday)

- Can discretize many 2d Abelian chiral gauge theories, with internal symmetries and their 't Hooft anomalies intact!
- Example: `3450' model, with left-handed Weyl fermions with charges 3,4 + right-handed Weyl fermions with charges 5,0.
 - There's an anomaly-preserving sign-problem-free bosonized formulation for 3450 model with gauged $(-1)^F$.
 - Surprise: lattice definition reveals an unexpected extra global symmetry at a special point in parameter space.
 - Symmetry is quite **exotic** in terms of fermions, not noticed before.
 - Excellent target for numerical exploration!

Conclusions

- Nielsen-Ninomiya theorem seems to kill hopes for exact, ultra-locally-acting, chiral symmetry on lattice.
- We've explored a new way around the Nielsen-Ninomiya theorem that accomplishes this goal.
 - It's numerically very cheap (see Evan's talk next!), and works for some chiral gauge theories.
 - Approach may generalize to d > 2, work in progress...
 - Many open questions!

Thanks for listening!