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TN approach to lattice field theories

 Tensor renormalization group (TRG), and tensor network (TN) methods in general, are free from the sign problem
« TN studies on (1+1)-D QCD have been active recently, as the first step towards (3+1)-D QCD:

v" Hamiltonian approach:

[S. Kuhn+, JHEP 07 (2015) 130] [P. Silvi+, Quantum 1 (2017) 9] [M. C. Banuls+, PRX 7 (2017) 041046]
[P. Sala+, PRD 98 (2018) 034505] [P. Silvi+, PRD 100 (2019) 074512] [M. Rigobello+, 2308.04488]
[H. Liu+, 2312.17734] [T. Hayata+, JHEP 07 (2024) 106]

v" Lagrangian approach:
[J. Bloch & R. Lohmayer, Nucl. Phys. B 986 (2023) 116032] [M. Asaduzzaman+, JHEP 05 (2024) 195] [Thomas’ talk on 31/7/2024|

SU(3), infinite coupling, SU(2) with reduced staggered SU(3) with staggered fermion, finite
finite density fermion, finite coupling, zero density coupling, finite density

* Some issues to consider
1) How to discretize the gauge group integration? (e.g. character expansion, Gauss-Legendre, Taylor expansion...)
2) How to handle the numerous degrees of freedom in practical computation?

The initial bond dimension is inevitably large! Today: 1+1-D SU(2) lattice gauge theory
at finite coupling with standard staggered
fermions at finite density Page 2



Lattice theory

* 1+1-dimensional SU(2) Yang-Mills theory coupled with staggered fermion on a square lattice

What we calculate with TRG

Z:/DUD)CD)ZeS S =S¢+ 5, + Sy
AL _ N — _ .

sp= > F ; ) P2 (0)U, ()X (n + ) — 2 (0 + ) Uf () x () pi(n) =1 pa(n) = (=)™

neA,v=1,2

+m Y xm)x(n)
p N TN +  Mermin Wagner Coleman theorem:

S = 2 NTReTYU (n)Us (n 4+ DU (0 + 2YUT(n ermin-Wagner-Coleman theorem: no spontaneous
g N ; 1(m)Ua( Ui )V () breaking of continuous symmetry occurs in 2D

A . . * In this study, we always employ finite m or A which
Sy = > Z X" (n)oax(n) + x(n)oax’ (n)] explicitly breaks U, (1) or Uy, (1) symmetry respectively

n
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Tensor network representation

« Grassmann path integral is expressed as the trace of a Grassmann tensor network by introducing a two-component auxiliary
Grassmann field on edges to decompose each of the hopping terms [Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]

* The gauge group integration is dicretized by a summation with group elements sampled uniformly from the group manifold
(The sample size is denoted as K) [Fukuma, M.+, PTEP, 2021(12),123B03]

1 K
[ =23 )

B T T
O O (ID—f‘ O——CO—>—()
e [ | Fermion bond dimension
E _.__ R : :_.__ i _j 4 4 4 > Our construction: 22N ,
o S i ke S8 O » [M. Asaduzzaman+, JHEP 05 (2024) 195]: 22N
A . 1 1 1 Infinite-coupling limit (8 = 0)
O O O A, A L \ The link variables can be integrated
i i TR: exactly, and the bond dimension of

Bond dimension: 22N K the tensor is 22N only
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[Adachi, D.+, PRB, 105(6), L060402 (2022)]

Compression of initial tensors [Akiyama, S., JHEP, 2022(11), 1-14]

*  We use bond-weighted tensor renormalization group to coarse-grain the tensor network and reach the thermodynamic limit

* The bond dimension cutoff in TRG algorithms usually depends on the bond dimension of initial tensors.
In our case (two-color i.e., N=2), the initial bond dimension is 16K = tensor compression scheme is needed

* Main idea: insert a pair of squeezers, which acts as a good approximation of identity, on every bond of the tensor network.

m=01, 8=16, p=04, K=14

92N I Dll Dé Accuracy of Qrigingl bond D! D' D! D! # of elements in .compréssed tensor
squeezers | dimension (16K) 27 D3 / # of elements in original tensor
i D, i D) 0.99 33,32,33,32 0.044%
0.999 64, 63,64, 63 0.646%
0.9995 75,72,75,72 1.158%
0.9999 24 100, 97,100, 97 3.737%
0.99995 112,109, 112, 109 5.920%
0.99999 137,133,137 133 13.187%

The initial bond dimension can be reduced to less than half while
keeping the Frobenius norm of the contraction well enough Page 5



Definition of observables

Free energy density:

InZ What we calculate with TRG
v
Number density: Fermion condensate: Diquark condensate:
af _ af daf
<n>—$ (XX)—% (xx) = I

The derivatives are computed by forward differences:

(n) =[f(u+Aw) — f(ul/Au (xx) = [f(m + Am) — f(m)]/Am (xx)=[f(A+ A1) - f(D]/A
1=0 Am = 10~* 1=0 A=A1=10"*%
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Phase structure of higher dimensional two-color QCD

An intermediate phase
7 characterized by 0 < (n) < 2 and
4 non-zero diquark condensate

» TN

 The phase diagram of infinite coupling two-color QCD
in (3+1)-D obtained by 1/d expansion and mean-field
approximation [Y. Nishida+, Phys. Rept. 398 (2004) 281-300]

Captured from [Y. Nishida+, Phys. Rept. 398 (2004) 281-300]
Mass = 0.02, spatial dimension = 3

1_
L 7T=0
I p/2
_____________ A
0.5}
| o
o o5 1 H

* Can we use TRG to calculate similar quantities in
(1+1)-D, with finite m and/or A?
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The bond dimension is 16 only, so no initial
tensor compression here

Numerical results: infinite coupling limit

m=01,8=0 V=220 D=284

diquark condensate, m = 0.1, 3 =0,V =2% D =84

10 N S V — 22
__ 04
0.8 =t =&
0.8 - V=2
—e— V=28
V=21
06 N V _ 212
0.6 - o V=
V=21
g N —o— V =216
0.4 1 0. v 18
vV =2%
0.2 - 0.2 -
0.0 1 0.0 4 o6o-66656679 : Er 5 oS EEa oo 00600006060
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
. H

* Anintermediate phase is observed in a finite region of g at m = 0.1
 The qualitative behavior of the observables at finite m and/or A is similar to that in the (3+1)-D case
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The bond dimension is 16 only, so no initial
tensor compression here

Numerical results: infinite coupling limit

_ _ _ 920 1y _ _
m=1,5=0V=2" D =284 diquark condensate, m =1, 3=0, V =22 D =84
104 oooooooooooooood OREo00000—0—0-0- 000000000 o v _ 92
94
0.5 “? = ;6
0.8 1 —
o V=28
0.4 1 V = 210
- —0— V — 212
0.6 Vgl
= 0.3 1 ia
So —— V=2
0.4 1 V — 918
0.2 Vo 220
0.2 1 0.1 4
0.0 4 I ESSoEE—o—B-0- o5 b b-oBa-6-8 0.0 4
0.7 0.8 0.9 1.0 1.1 1.2 1.3 0.7 0.8 0.9 1.0 1.1 1.2 1.3
I 1

* A sharp transition is observed, and the intermediate phase becomes a very narrow region at m = 1
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Numerical results: tinite 8 regime

m=0.1,3=08,V =2 D=150 diquark condensate, m = 0.1, 3 = 0.8, V =22, D = 150
1.0 A 0.8 1
' o V=22
—o— V = 24
V =26
0.8 1 0.6 - & V = 28
V=21
0.6 - —— V — 212
| _ 0.4 1 V = 214
. e V=216
0.4 1 - V:218
| vV =2%
0.2 1
0.2 A
0.0
0.0
0.1 0.2 0.3 0.4 0.5 0.6 00 01 02 03 04 05 06 07
I 1t

* As f becomes nonzero, the intermediate phase becomes broader atm = 0.1
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Numerical results: tinite 8 regime

m=18=08 V=220 D=150

1.04 = = = = = 5 PEN
0.8 1
0.6 1
(n)
5 (Xx
0.4 - = {(xx)
0.2
0.0 4 G— ‘:_?-7—7%—7—{_‘}7@-,_,_767_7_,_,%— 14-—;\)3.—.—7"] £ 5 = &
0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

* Form = 1, the behavior at finite coupling is similar to that at infinite coupling

7

diquark condensate, m =1, 3 =10.8, V = 2%, D = 150
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P dependence on transition position

number density, m = 0.1, V = 220

2.0' — IBZO,D:84 —B—a—a—8
B =0.4,D =150
P =[50 =150 * The first transition point (the one
1.5 - p=12,D=150 with smaller p) seems to be robust
f=1.6,D =150 against f3
) * The second transition point locates
= 101 7 at larger chemical potential as S8
as [ increases Increases
ﬁ
* (n) does not saturate in regions of
0.5 1 larger chemical potential as the
gauge interaction is weakened,
approaching the continuum limit
0.0 1
0.1 0.2 0.3 0.4 0.5 0.6
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Summary

« Thisisa TRG study on non-Abelian gauge theory coupled with standard staggered fermions at finite density and finite
coupling

 Tensor network calculation for this kind of theories is computationally challenging because of the very large initial bond
dimension

*  We introduce an efficient initial tensor compression scheme to deal with this issue

* TRG enables the calculation of several physical quantities at the infinite coupling limit and finite § regime

 Future directions:
1) Construction of tensors which allows a larger sample size K for the discretization of gauge group
2) Chiral limit and vanishing A limit in higher dimensions
3) Extension to the SU(3) gauge group
4) Investigation of inhomogeneous phase [T. Kojo, Nucl. Phys. A 877(2012) 70-94] [T. Hayata+, JHEP 07 (2024) 106]

Thank you for listening!
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Backup: tensor network representation

— — — R

Grassmann TN representation for fermionic sector
[Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]

We introduce two-component auxiliary Grassmann fields on each
link of the lattice to decompose each of the forward and backward
hopping term

Integrate out the original staggered fermion fields on each site

The Grassmann path integral becomes the trace of a Grassmann
tensor network with the auxiliary Grassmann fields

2N binary indices are assigned on every link to specify the occupation
number of the auxiliary Grassmann fields

Z[U] = / DxDx e/

N g /77v (n),mw(n) f( (n),(v(n)

1[ 7]

n

— — — _—

Discretization of gauge group integration
[ Fukuma, M., Kadoh, D., & Matsumoto, N., PTEP, 2021(12),123B03]

The gauge group integration is dicretized by a summation with group
elements sampled uniformly from the group manifold

—
Q.
J
g
S
R

| —
g
&
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Backup: algorithmic parameter dependence

number density, m = 0.1, 3 = 0.8, V =22, Ay = 0.04 number density, m = 0.1, 3 =12,V =2% D =125

2:00 4 D =100 s B—H—u8a8ga 2.0 - K =10, él, D =195 BB B850

1.75 - D =180 F e K =19, (5, D =125
< o D =150 7 ;
< —e— K =4, Gy, D=125
~ 1,50 - & o
= Lo K =14,C3, D = 150
\‘f 1.25 -
5 1.00 - =~ 1.0 1
+ ~
3 0.7 4
i
10,50 - 0.5 - 2
=
= 0.25 - .

0.0 1 o—e—a-gg&
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
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Backup: Results on a 2 X 2 lattice by exact contraction

Average plaquette, 2 x 2 square lattice, m = 0.2, uy =0, K = 14

O
0.6 &
O o o ©
%00
0
0.5 1 . 0
go°
@)
0.4+ 0 o o)
= §° .
o) O HMC |G. Gagliardi & W. Unger,
0.3 - _o° — PRD 101, 034509 (2020)]
0.2 - - O C:;S
Hie) © O Gy
] P
0.1 -
0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Backup: scheme of squeezer construction

EVD -
L m—UB—O—U}g—m

(c) M’
L= 1
= 1A/ O A " Joga . .
VOB ° v - VoA D’ (the bond dimension of the compressed
Us —O—O— U}, Ua —O—‘—O— ) tensor) is equal to the number of singular
values kept in this step
truncated
s @OV XSt
o g A= 0.9999
2i=1 Si
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Backup: scheme of squeezer construction

truncated
-

22N | — > D |
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