
Grassmann tensor renormalization group approach to (1+1)-dimensional two-color QCD with 
staggered fermion

2024 Lattice Conference @ University of Liverpool (2nd August 2024)

Presenter: Ho Pai, KWOK

Collaborators: Shinichiro Akiyama, Synge Todo

Paper is in preparation



Content

1. Introduction
• TN approach to lattice field theories 
• Brief review of the lattice model

2. Tensor network representation

3. Compression of initial tensors

4. Numerical results
• Infinite coupling results
• Finite 𝛽 results

5. Summary & Outlook

Page 1



TN approach to lattice field theories

• Tensor renormalization group (TRG), and tensor network (TN) methods in general, are free from the sign problem

• TN studies on (1+1)-D QCD have been active recently, as the first step towards (3+1)-D QCD:

✓ Hamiltonian approach: 

✓ Lagrangian approach: 

• Some issues to consider
1) How to discretize the gauge group integration? (e.g. character expansion, Gauss-Legendre, Taylor expansion…)
2) How to handle the numerous degrees of freedom in practical computation?

Today: 1+1-D SU(2) lattice gauge theory 
at finite coupling with standard staggered 
fermions at finite density

SU(2) with reduced staggered 
fermion, finite coupling, zero density

SU(3), infinite coupling, 
finite density
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SU(3) with staggered fermion, finite 
coupling, finite density

[S. Kuhn+, JHEP 07 (2015) 130]  [P. Silvi+, Quantum 1 (2017) 9]   [M. C. Banuls+, PRX 7 (2017) 041046] 
[P. Sala+, PRD 98 (2018) 034505] [P. Silvi+, PRD 100 (2019) 074512] [M. Rigobello+, 2308.04488] 
[H. Liu+, 2312.17734] [T. Hayata+, JHEP 07 (2024) 106]

[J. Bloch & R. Lohmayer, Nucl. Phys. B 986 (2023) 116032] [M. Asaduzzaman+, JHEP 05 (2024) 195] [Thomas’ talk on 31/7/2024]

The initial bond dimension is inevitably large!



Lattice theory

• 1+1-dimensional SU(2) Yang-Mills theory coupled with staggered fermion on a square lattice
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What we calculate with TRG

• Mermin-Wagner-Coleman theorem: no spontaneous 
breaking of continuous symmetry occurs in 2D

• In this study, we always employ finite 𝑚 or 𝜆 which 
explicitly breaks UA (1) or UV (1) symmetry respectively



Tensor network representation
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• Grassmann path integral is expressed as the trace of a Grassmann tensor network by introducing a two-component auxiliary 
Grassmann field on edges to decompose each of the hopping terms [Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]

• The gauge group integration is dicretized by a summation with group elements sampled uniformly from the group manifold 
(The sample size is denoted as K) [Fukuma, M.+, PTEP, 2021(12),123B03]

Infinite-coupling limit (𝛽 = 0)
The link variables can be integrated 
exactly, and the bond dimension of 
the tensor is 22N onlyBond dimension: 22N K

Fermion bond dimension

➢ Our construction: 22N

➢ [M. Asaduzzaman+, JHEP 05 (2024) 195]: 22N
2



Compression of initial tensors

• We use bond-weighted tensor renormalization group to coarse-grain the tensor network and reach the thermodynamic limit

• The bond dimension cutoff in TRG algorithms usually depends on the bond dimension of initial tensors. 
In our case (two-color i.e., N=2), the initial bond dimension is 16K  tensor compression scheme is needed

• Main idea: insert a pair of squeezers, which acts as a good approximation of identity, on every bond of the tensor network.

[Adachi, D.+, PRB, 105(6), L060402 (2022)]

[Akiyama, S., JHEP, 2022(11), 1-14]
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Accuracy of 
squeezers

Original bond 
dimension (16K)

𝐷2
′ , 𝐷4

′ , 𝐷1
′ , 𝐷3

′ # of elements in compressed tensor 
/ # of elements in original tensor

0.99

224

33, 32, 33, 32 0.044%

0.999 64, 63, 64, 63 0.646%

0.9995 75, 72, 75, 72 1.158%

0.9999 100, 97, 100, 97 3.737%

0.99995 112, 109, 112, 109 5.920%

0.99999 137, 133, 137 133 13.187%

The initial bond dimension can be reduced to less than half while 
keeping the Frobenius norm of the contraction well enough



Definition of observables
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𝜒𝜒 =
𝜕𝑓

𝜕𝜆

𝑓 =
ln 𝑍

𝑉

Free energy density:

𝑛 =
𝜕𝑓

𝜕𝜇

Number density:

What we calculate with TRG

Fermion condensate:

ҧ𝜒𝜒 =
𝜕𝑓

𝜕𝑚

Diquark condensate:

The derivatives are computed by forward differences:

𝑛 = 𝑓 𝜇 + Δ𝜇 − 𝑓(𝜇) /Δ𝜇 ҧ𝜒𝜒 = 𝑓 𝑚 + Δ𝑚 − 𝑓(𝑚) /Δ𝑚 𝜒𝜒 = 𝑓 𝜆 + Δ𝜆 − 𝑓 𝜆 /Δ𝜆

𝜆 = 0 Δ𝑚 = 10−4 𝜆 = 0 𝜆 = Δ𝜆 = 10−4



Phase structure of higher dimensional two-color QCD
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• The phase diagram of infinite coupling two-color QCD 
in (3+1)-D obtained by 1/d expansion and mean-field 
approximation [Y. Nishida+, Phys. Rept. 398 (2004) 281–300]

An intermediate phase 
characterized by 0 < 𝑛 < 2 and 
non-zero diquark condensate

Captured from [Y. Nishida+, Phys. Rept. 398 (2004) 281–300]
Mass = 0.02, spatial dimension = 3

• Can we use TRG to calculate similar quantities in 
(1+1)-D, with finite 𝑚 and/or 𝜆?

𝜇



Numerical results: infinite coupling limit
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The bond dimension is 16 only, so no initial 
tensor compression here

• An intermediate phase is observed in a finite region of 𝜇 at 𝑚 = 0.1
• The qualitative behavior of the observables at finite 𝑚 and/or 𝜆 is similar to that in the (3+1)-D case



Numerical results: infinite coupling limit
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The bond dimension is 16 only, so no initial 
tensor compression here

• A sharp transition is observed, and the intermediate phase becomes a very narrow region at 𝑚 = 1



Numerical results: finite 𝜷 regime

Page 10

• As 𝛽 becomes nonzero, the intermediate phase becomes broader at 𝑚 = 0.1

K=14



Numerical results: finite 𝜷 regime
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• For 𝑚 = 1, the behavior at finite coupling is similar to that at infinite coupling

K=14



𝜷 dependence on transition position
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as 𝛽 increases

• The first transition point (the one 
with smaller 𝜇) seems to be robust 
against 𝛽

• The second transition point locates 
at larger chemical potential as 𝛽 
increases

• 𝑛  does not saturate in regions of 
larger chemical potential as the 
gauge interaction is weakened, 
approaching the continuum limit

K=14



Summary

• This is a TRG study on non-Abelian gauge theory coupled with standard staggered fermions at finite density and finite 
coupling

• Tensor network calculation for this kind of theories is computationally challenging because of the very large initial bond 
dimension

• We introduce an efficient initial tensor compression scheme to deal with this issue

• TRG enables the calculation of several physical quantities at the infinite coupling limit and finite 𝛽 regime

• Future directions: 
1) Construction of tensors which allows a larger sample size K for the discretization of gauge group
2) Chiral limit and vanishing 𝜆 limit in higher dimensions
3) Extension to the SU(3) gauge group
4) Investigation of inhomogeneous phase [T. Kojo, Nucl. Phys. A 877(2012) 70-94]  [T. Hayata+, JHEP 07 (2024) 106]
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Thank you for listening!



Backup slides



Backup: tensor network representation
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Grassmann TN representation for fermionic sector
[Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]

• We introduce two-component auxiliary Grassmann fields on each 
link of the lattice to decompose each of the forward and backward 
hopping term

• Integrate out the original staggered fermion fields on each site

• The Grassmann path integral becomes the trace of a Grassmann 
tensor network with the auxiliary Grassmann fields

• 2N binary indices are assigned on every link to specify the occupation 
number of the auxiliary Grassmann fields

Discretization of gauge group integration
[Fukuma, M., Kadoh, D., & Matsumoto, N., PTEP, 2021(12),123B03]

• The gauge group integration is dicretized by a summation with group 
elements sampled uniformly from the group manifold



Backup: algorithmic parameter dependence
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K=14



Backup: Results on a 𝟐 × 𝟐 lattice by exact contraction
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K=14

[G. Gagliardi & W. Unger, 
PRD 101, 034509 (2020)]



Backup: scheme of squeezer construction
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D’ (the bond dimension of the compressed 
tensor) is equal to the number of singular 
values kept in this step

σ𝑖=1
𝐷′ 𝑠𝑖

2

σ𝑖=1
22𝑁𝐾 𝑠𝑖

2
≥ 𝑟 = 0.9999



Backup: scheme of squeezer construction
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