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Introduction - Tensor network

Partition functions and expectation values of physical quantities can be
represented as a tensor network.
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Introduction - Tensor network

Partition function represented as a tensor diagram:
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Introduction - Tensor renormalization group

Coarse-graining of tensor networks and reducing computational cost.

Various TRG algorithms

Tensor renormalization group [Levin-Nave, 2007]

Higher-order tensor renormalization group (HOTRG) [Xie et al., 2012]

Tensor network renormalization [Evenbly-Vidal, 2015]

Anisotropic TRG [Adachi-Okubo-Todo, 2019]

Triad TRG [Kadoh-Nakayama, 2019]
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Introduction - Higher-order tensor renormalization group (HOTRG)

1. Obtain isometry U and U †.
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Dimension of      is 𝑁 Truncation of the sum at 𝐷
D determines the accuracy of the analysis.

2. Contract the tensor and isometry.
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Dimensional reduction :𝑁! → 𝐷
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Introduction - entanglement entropy

A measure of the degree of quantum entanglement between two subregions in a

bipartite quantum system.

𝑆! = −Tr𝜌! log 𝜌! 𝐴

�̅�

where ρA = TrĀρ
Applications in various fields

Particle physics: quantum correction to the entropy of black holes.

Condensed matter physics: probe of the quantum phase transitions.

Quantum information: quantification of entanglement in quantum states.

→ A general computation method of the EE is needed.
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Introduction - numerical analysis of the EE

Monte Carlo method: EE through entropic C-function.

e.g. 4d SU(3) gauge theory [Itou-Nagata-Nakagawa-Nakamura-Zakharov, 2015]

Tensor network: direct computaion of the EE, without sign problem.

e.g. (1 + 1)d O(3) non-linear sigma model [Kuramashi-Luo, 2023]

(Kuramashi san told us the detail in his talk on last Tue.)

Previous tensor network analyses are limited to the EE of half-space subregion.

We propose a general TRG method of computing the entanglement

entropy for any subregion size.
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EE of a 1D quantum system with periodic boundary condition

1D quantum system at zero temperature with spatial size Lx = 2m.

↔ (1 + 1)D classical system with spatial size Lx and infinite temporal size.

𝑥

𝑡

… … … ……
𝐿! sites

Quantum system Classical system

We consider the corresponding (1+1)D classical system instead.
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Tensor networks in the 2D classical system

Partition function Z as a tensor network:

…

…

𝑍 = Tr𝜌 =

𝑇
𝑥

𝑡

… : Periodic boundary condition
… : Trace over 𝜌

The number of tensors is Lx × Lt where Lx = 2m and Lx ≪ Lt.

The detail of the tensor T depends on the model.
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Tensor networks in the 2D classical system

Reduced density matrix ρA of subregion A with spatial size l:

𝜌! = Tr!̅𝜌 =

𝑙 indices
𝐴

�̅�

𝑇
…

…
…

𝑥

𝑡

… : Partial trace over 𝜌

l spatial indices within subregion A → index of ρA
→ ρA is a Dl ×Dl matrix.
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Tensor networks in the 2D classical system

EE can be computed from ρA

SA = −trρA log ρA = −
∑
a

λa log λa,

where λa is an eigenvalue of ρA.

Problems:

Large number of tensor contractions for computing ρA.

→ use HOTRG for reducing computational cost.

Huge matrix size of ρA.

→ our new approach: reducing the ρA to the smaller effective one ρ′A:

ρA → ρ′A

where ρ′A is a Dh ×Dh matrix, and h ≪ l.
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Our approach to the reduced densoty matrix

Our approach: reducing ρA to smaller effecticve matrix ρ′A.

ρ′A = (coarse-grained density matrix ρ̃) × (tree-like tensor B made of isometries)

(𝜌′!)"# = 𝜌&$%&'𝐵$%&'"# = 𝐼
𝐽

𝑎
𝑏

𝜌& 𝑐
𝑑

𝐵

where I, J = 1, 2, . . . , Dh, l =
∑

n 2
n · Cn (Cn = 0, 1), h =

∑
nCn.

→ matrix size is reduced from Dl ×Dl to Dh ×Dh

h = 1 for l = 2p

h = 2 for l = 2p + 2q
...
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Our approach to reduced density matrix

Coarse-grained density matrix ρ̃

…

…

𝜌 =

𝑇
𝑥

𝑡

Coarse-graining
by HOTRG m-1 times

…

𝑇!
𝑎 	𝑏

𝑐 𝑑

Isometries U (k−1) obtained through k-th HOTRG procedure in spatial direction

(k = 1, 2, . . . ,m− 1) are ingredients of tensor B.
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Our approach to reduced density matrix

Tensor B

=(product of isometries U (n) and U (n)†) × (Kronecker deltas).

Product of isometries

…
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The detail of the product of isometries U (k), U (k)† depends on the size of

subregion A.
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Our approach to reduced density matrix

For l ≤ Lx/2 : BabcdIJ =
(
U (m−1)U (m−1)†U (m−2)U (m−2)† · · ·

)
abIJ

δcd
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For l > Lx/2 : BabcdIJ =
(
U (m−1)U (m−1)†U (m−2)U (m−2)† · · ·

)
cdI1J1

δaI2δbJ2
where I = (I1, I2), J = (J1, J2).
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Numerical analysis of EE

2d classical Ising model

H = −J
∑

<x,y>

sxsy

Parameters

Spatial size Lx = 1024, Temporal size Lt = 16× 1024

D is fixed to 96.

Periodic boundary conditions in both spatial and temporal directions.

Subregion size dependence of the EE at Tc is studied.
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Subregion size dependence of EE for fixed Lx = 1024 at T = Tc
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EE for subregion size l = 2m and

l = 2m + 2p (0 ≤ m < 10, p < m).

Analytic solution for EE

S ∼ c

3
log

(
sin

lπ

Lx

)
Fitting result for 7 ≤ l ≤ 1024:

c = 0.49997(8)

→ The analysis reproduces known

results and demonstrates the validity

of our method.
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Conclusions

Main Results

We developed a general method to compute the EE of any size subregion.

We studied the EE of 1d quantum Ising model using our method and reproduced

the known result.

Future directions

Application to the higher dimensional (d > 2) field theories.

Efficient TRG algorithm

Parallelization of the algorithm

Correspondence to holography.

Ryu-Takayanagi formula
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Backup slides
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EE for fixed x = l/Lx, T = Tc = 2/ log(1 +
√
2)
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Varying spatial size of the system Lx

and subregion size l such that

x = l/Lx is fixed.

We can see the theoretical solution

SA(l, x) =
c

3
log l + k(x)

is reproduced.

c: central charge of the theory
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Central charge for fixed x = l/Lx at T = Tc
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x central charge

1/2 0.5001(2)

1/4 0.5000(4)

1/8 0.5001(4)

1/16 0.5001(5)

21 / 23



Temperature dependence of EE for l = Lx/2
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Peak at critical temperature

Sharper peak for larger system size
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Temperature dependence of EE for l = Lx/2
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reproduced at critical temperature.

Sharper peak for larger system size.
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