Tensor renormalization group study of (1+1)-dimensional U(1) gauge-Higgs model at $\theta = \pi$ with Lüscher's admissibility condition

Shinichiro Akiyama^{a), b)}, Yoshinobu Kuramashi a) a) Center for Computational Sciences, University of Tsukuba b) Endowed Chair for Quantum Software, The University of Tokyo

Based on SA-Kuramashi, arXiv:2407.10409

LATTICE 2024 @ the University of Liverpool 2024.8.2

TRG approach

- \checkmark Tensor renormalization group (TRG) approximately contracts a given TN based on the idea of real-space renormalization group
	- ・No sign problem
	- ・**The computa7onal cost scales logarithmically w. r. t. system size**
	- ・**Direct evalua7on of the Grassmann integrals**
	- ・**Direct evalua7on of the path integral**
- ✔ **Applicability to the higher-dimensional systems**
	- \cdot If the system is translationally invariant on a lattice, we can easily apply the TRG to contract the TN
	- \cdot In higher dimensions, TRG approach is usually less computationally expensive than the variational TN approach
	- \cdot Higher-dimensional TRG computations must be informative to develop and improve various higher-dimensional TN algorithms

Grassmann TRG approach

 \vee TRG can directly deal with the Grassmann path integral w/o pseudo-fermion

Gu-Verstraete-Wen, arXiv.1004.2563, Gu, PRB88(2013)115139, Shimizu-Kuramashi, PRD90(2014)014508

VINTRODUCTION TO the Grassmann TRG The Condense (2004) 343002 (31pp) **Journal of Physics: Condensed Matte**

SA-Meurice-Sakai,

Journal of Physics: Condensed Matter 36 (2024) 343002

✔ **A Python package by A. Yosprakob**

Yosprakob, SciPostPhys. Codebases 20 (2023) Cf. Talk by Yosprakob (7/30)

J. Phys.: Condens. Matter **36** (2024) 343002 (31pp) https://doi.org/10.1088/1361-648X/ad4760

2/12

Topical Review

Tensor renormalization group for fermions

Shinichiro Akiyama1,2 **, Yannick Meurice**3,∗ **and Ryo Sakai**⁴

¹ Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan ² Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan ³ Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, United States of America

⁴ Jij Inc., Bunkvo-ku, Tokyo 113-0031, Japan

E-mail: yannick-meurice@uiowa.edu and akiyama@ccs.tsukuba.ac.jp

Received 6 February 2024, revised 2 April 2024 Accepted for publication 3 May 2024 Published 28 May 2024

6. The Hubbard model 26
6.1. $(1+1)$ -dimensional model 28 6.1. $(1+1)$ -dimensional model 28
6.2. $(2+1)$ -dimensional model 28 $6.2. \quad (2+1)$ -dimensional model 28
Conclusions 7. Conclusions 29 Data availability statement 29 Acknowledgment 29

Abstract

We review the basic ideas of the tensor renormalization group method and show how they can be applied for lattice feld theory models involving relativistic fermions and Grassmann variables in arbitrary dimensions. We discuss recent progress for entanglement fltering, loop optimization, bond-weighting techniques and matrix product decompositions for Grassmann tensor networks. The new methods are tested with two-dimensional Wilson–Majorana fermions and multi-favor Gross–Neveu models. We show that the methods can also be applied to the fermionic Hubbard model in 1+1 and 2+1 dimensions.

Keywords: tensor networks, lattice gauge theory, relativistic lattice fermions, Fermi Hubbard model, Grassmann path integrals, sign problems

Contents

- 1. Introduction
- 2. Formalism for the Grassmann TRG 3
2.1 Grassmann tensor network representation 3 2.1. Grassmann tensor network representation
	-
- 2.2. Exact contraction 6
2.3. Model-independent notation 8 2.3. Model-independent notation
- 2.4. Extension to lattice gauge theories
- 2.5. Approximate contraction by the Levin–Nave
- TRG 11
- 2.6. Approximate contraction by the HOTRG 14 2.7. Practical remarks 16
- 3. Examples of numerical calculations 17
- 3.1. Wilson–Majorana fermions 17

[∗] Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. References 29

Lüscher's admissibility condition

Lüscher, NPB549(1999)295-334

3/12

 \vee The gauge action reads

$$
\beta S_g = \beta \sum_{n,\mu > \nu} \frac{1 - \text{Re} P_{\mu\nu}(n)}{1 - \|1 - P_{\mu\nu}(n)\| / \epsilon} \qquad \text{if} \qquad \left\|1 - P_{\mu\nu}(n)\right\| < \epsilon
$$

and $\beta S_g = \infty$, otherwise

- \vee The gauge fields are separated into disconnected subspaces, corresponding to topological charge
- \vee In the MC simulation, the topological change is substantially suppressed

Fukaya-Onogi, PRD68(2003)074503

 $\mathcal V$ With a θ term, the MC simulation is extremely difficult due to **the complex action problem and the topological freezing**

Why don't we take the advantage of TRG?

 \vee TRG allows us to compute the path integral w/o suffering from the sign problem and **the full contributions from every topological sector should be automatically included**

As an example, we consider the U(1) gauge-Higgs model w/ a θ term in (1+1)D

 $S = \beta S_g + S_h + S_{\Theta}$

 $S_h = -\sum_n [\sum_{v} {\{\phi^*(n)U_v\phi(n+\hat{v}) + \phi^*(n+\hat{v})U_v^*\phi(n)}\} + M|\phi(n)|^2 + \lambda |\phi(n)|^4$

$$
S_{\Theta} = -\frac{i\theta}{2\pi} \sum_{n} \log P_{12}(n)
$$

 \blacktriangleright At $\theta = \pi$, the first-order transition takes place w/ $M > M_c$ and the critical behavior at $M = M_c$ is in the 2D Ising universality class

> Gattringer+, NPB935(2018)344-364 **Komargodski+, SciPost Phys. 6(2019)003**

 $^{\prime}12$

TN formulation

 \blacktriangleright Parametrizing $U_{\nu}(n) = e^{i\vartheta_{\nu}(n)}$ and $\varphi(n) = r(n)e^{i\varphi(n)}$, we choose the unitary gauge which eliminates $\varphi(n)$ from the action

 \vee The path integral Z is discretized by Gauss quadrature rules

Kuramashi-Yoshimura, JHEP04(2020)089, Kadoh+, JHEP02(2020)161

$$
\int_{-\pi}^{\pi} \frac{d\vartheta_{\nu}}{2\pi} f(\vartheta_{\nu}) \simeq \sum_{\widetilde{\vartheta}_{\nu} \in D_g} w_{\widetilde{\vartheta}_{\nu}} f(\widetilde{\vartheta_{\nu}}), \qquad \int_{0}^{\infty} dr \, g(r) \simeq \sum_{\widetilde{r} \in D_h} w_{\widetilde{r}} g(\widetilde{r})
$$

 \blacktriangleright The accuracy of the discretized path integral is controlled by # of sampling points in D_q and $D_h: Z \simeq Z(K_q, K_h)$

 \blacktriangleright The tensor network representation for $Z(K_q, K_h)$ is straightforwardly derived

 \blacktriangleright We use the Bond-weighted TRG (BTRG) algorithm to evaluate $Z(K_a,K_h)$

Adachi+, PRB105(2022)L060402

5/12

6/12

Pure gauge theory 1/2

w/ $\beta = 3, \epsilon = 1, D = K_q = 30$

- \blacktriangleright A Clear signal of the first-order transition in the topological charge
- \blacktriangleright The two-fold ground state degeneracy at $\theta = \pi$ is also observed

Gu-Wen, PRB80(2009)155131

Pure gauge theory 2/2

w/ $\beta = 3, \epsilon = 1, D = K_q = 30$

7/12

 \blacktriangleright The peak height of the topological susceptibility is proportional to the volume

✔ **TRG is successfully dealing with the Lüscher gauge ac7on**

The gauge-Higgs model

 $w/\beta = 3, \lambda = 0.5, \epsilon = 1, K_g = K_h = 20, D = 160$

 \blacktriangleright Discontinuity in the topological charge is vanishing by decreasing the mass M

 \blacktriangleright Computing the ground-state degeneracy, we can bound the critical mass M_c

8/12

Identification of the universality class

 $w/\beta = 3, \lambda = 0.5, \epsilon = 1, K_a = K_h = 20, D = 160$

 2π

ln

9/12

 \blacktriangleright Transfer matrix T is easily obtained from the TN representation **Gu-Wen, PRB80(2009)155131**

 $x_n(L) = \frac{1}{2\pi}$ \blacktriangleright Ratio of the largest eigenvalue of T to smaller one:

✔ These are nothing but the **scaling dimensions** when the system is sufficiently large and at criticality

 \blacktriangleright The volume independence in $x_1(L)$ is observed w/ $x_1(L) = 1/8$, which agrees with the 2D Ising universality class

Tensor-network-based level spectroscopy

✔ Assuming the 2D Ising universality class, we employ the level spectroscopy to determine the critical mass M_c from scaling dimensions intersections **Ueda-Oshikawa, PRB108(2023)024413**

Cf. Next talk by Fathiyya

10/12

 \blacktriangleright We particularly use the intersections of $x_{\rm cmb} = x_1 + x_2/16$ to remove the effect of the leading irrelevant perturbation

ו וואס היהודי הוא שיונו נוור הוסטא סטיסטא אינט איז α the ground-state degeneracy, but also comparable with the previous MC result based on dual representation employing the Villain-type gauge action: $M_c = 2.989(2)$

Gattringer+, NPB935(2018)344-364

- \blacktriangledown Investigating the finite-size correction for the free energy, the central charge is obtained as $c = 0.50(7)$, in agreement with the 2D Ising universality class
	- \blacktriangledown The algorithmic-parameter dependence of M_c seems well suppressed

 χ is another algorithmic parameter to compress the initial bond dimension from $K_q K_h$ to $K_q \chi$

Summary and outlook

- \blacktriangleright The critical behavior in the (1+1)D gauge-Higgs model with a θ term has been investigated by the TRG, employing the Lüscher gauge action
- \blacktriangleright The 2D Ising universality class is confirmed at $\theta = \pi$, as expected
- \vee All numerical results show that the TRG is a promising approach to investigate the lattice gauge theories with Lüscher's admissibility condition

Appendices

Comparison $w/$ the standard Wilson action $1/2$

 \vee The field-theoretical def. for the topological term:

$$
S_{\Theta} = -\frac{i\theta}{2\pi} \sum_{n} \text{Im} \, P_{12}(n)
$$

- \blacktriangleright The 2π periodicity appears in the continuum limit
- **► The Lüscher action shows the faster convergence than the Wilson one**
- Table 2: Comparison of ✓c*/*⇡ obtained by the L¨uscher gauge action (✏ = 1) and Wilson ✔ The peak of the suscep-bility is closer to $\theta/\pi=1.$

Comparison $w/$ the standard Wilson action 2/2

 \vee The field-theoretical def. for the topological term:

$$
S_{\Theta} = -\frac{i\theta}{2\pi} \sum_{n} \text{Im} \, P_{12}(n)
$$

- \blacktriangleright The 2π periodicity appears in the continuum limit
- **► The Lüscher action shows the faster convergence than the Wilson one**
- \blacktriangledown The peak of the susceptibility is closer $\Box_\mathbb{R}^\mathbb{R}\bigwedge\bigwedge\bigwedge$ to $\theta/\pi=1.$

Tensor-network-based level spectroscopy

✔ Assuming the 2D Ising universality class, we employ a level spectroscopy to determine the critical point T_c $\rule{1em}{0.15mm}$ Ueda-Oshikawa, PRB108(2023)024413

- (i) Choose two mass parameter $T^{(\pm)}$ such that $T^{(-)} \leq T_c \leq T^{(+)}$
- (ii) At these two points, compute $x_{\rm cmb}(L) = x_1(L) + x_2(L)/16$. This combination removes the effect from the leading irrelevant perturbation associated with the scaling dimension 4
- (iii) Perform liner interpolations of $x_{\rm cmb}(L) 3/16$ btw $T^{(-)}$ and $T^{(+)}$ at each system size and find a crossing point $T^*(L)$ of two lines with the system sizes L and $\sqrt{2}L$
- (iv) Fit $T^*(L)$ by $T^*(L) = T_c + aL$, and we finally obtain the critical point T_c

TN representation 1/2 $T(T, T, \Theta)$ the tensor network $T(T, \Theta)$ **TN** representation 1/2

∕ The discretized path integral is described by a four-leg local tensor *T*
 Z IUL \blacktriangleright The discretized path integral is described by a four-leg local tensor T : *^S*˜✓ ⁼ ⁱ✓ X ln h ei⇡(#˜1(*n*)+#˜2(*n*+ˆ1)#˜1(*n*+ˆ2)#˜2(*n*)) i scretize \mathbf{X} lath integral is described by a four-leg lo

$$
Z(K_g, K_h) = \operatorname{tTr}\left[\prod_n T_n\right]
$$

$$
(T_n)_{xyx'y'} = T^{(g)}_{x_g y_g x'_g y'_g} T^{(\theta)}_{x_g y_g x'_g y'_g} T^{(h)}_{x_h y_h x'_g x'_h y'_g y'_h}
$$

$$
T_{x_g y_g x'_g y'_g}^{(g)}
$$

=
$$
\begin{cases} \frac{\sqrt{w_{x_g} w_{y_g} w_{x'_g} w_{y'_g}}}{2^2} \exp \left[-\beta \frac{1 - \cos \pi (y'_g + x_g - y_g - x'_g)}{1 - [1 - \cos \pi (y'_g + x_g - y_g - x'_g)]/\epsilon} \right] & \text{if admissible} \\ 0 & \text{otherwise} \end{cases}
$$

$$
T^{(\theta)}_{x_g y_g x'_g y'_g} = \exp\left(\frac{\mathrm{i} \theta}{2\pi} \ln \left[\mathrm{e}^{\mathrm{i} \pi \left(y'_g + x_g - y_g - x'_g \right)} \right] \right)
$$

TN representation 2/2 For the Higgs part, we introduce the following matrix, we introduce the following matrix, $\frac{1}{2}$ \blacksquare

∕ Compression for the hopping term: For the Higgs part, we introduce the following hopping matrix, p*w*` ▼ Compression for t ✔ Compression for the hoppir ⇣ ˜`(*n*) + ˜`(*n* + ˆ⌫)

$$
H_{\tilde{\ell}(n)\tilde{\theta}_{\nu}(n)\tilde{\ell}(n+\hat{\nu})}\n= \frac{\sqrt[4]{w_{\tilde{\ell}(n)}w_{\tilde{\ell}(n+\hat{\nu})}}e^{(\tilde{\ell}(n)+\tilde{\ell}(n+\hat{\nu}))/4}\n\\
\times \exp\left[2\sqrt{\tilde{\ell}(n)\tilde{\ell}(n+\hat{\nu})}\cos\pi\tilde{\theta}_{\nu}(n) - \frac{M}{4}\left(\tilde{\ell}(n)+\tilde{\ell}(n+\hat{\nu})\right) - \frac{\lambda}{4}\left(\tilde{\ell}(n)^{2} + \tilde{\ell}(n+\hat{\nu})^{2}\right)\right]
$$

$$
H_{\tilde{\ell}(n)\tilde{\vartheta}_{\nu}(n)\tilde{\ell}(n+\hat{\nu})} \simeq \sum_{\alpha=1}^{\chi} A_{\tilde{\ell}(n)\tilde{\vartheta}_{\nu}(n)\alpha} B_{\tilde{\ell}(n+\hat{\nu})\alpha}
$$

$$
T^{(h)}_{x_h y_h x'_g x'_h y'_g y'_h} = \sum_{\tilde{\ell}(n)} A_{\tilde{\ell}(n) y'_g x_h} A_{\tilde{\ell}(n) x'_g y_h} B_{\tilde{\ell}(n) x'_h} B_{\tilde{\ell}(n) y'_h}
$$