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Problem of Monte Carlo:
• Need sufficiently large time extend and time separation to extract 𝜔!,# = 𝐸!,# − 𝐸$.
• Need large statistic to extract excited states. 2
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𝐿.
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𝑠.𝑒123. 𝑎 |

7



1-particle state energy of Ising Model (𝑞 = −1 sector) 
| Ω ,𝜙 𝑝 𝑎 | = |⟨Ω|

1
𝐿.
2

./&

041!
𝑠.𝑒123. 𝑎 | 𝑝 is momentum of |𝑎⟩≠ 0For a given 𝑝

7



1-particle state energy of Ising Model (𝑞 = −1 sector) 
| Ω ,𝜙 𝑝 𝑎 | = |⟨Ω|

1
𝐿.
2

./&

041!
𝑠.𝑒123. 𝑎 | 𝑝 is momentum of |𝑎⟩≠ 0For a given 𝑝

𝑝 =
2𝜋𝑛
𝐿T

, 𝑛 = 0,1,2, … , 𝐿5./

7



1-particle state energy of Ising Model (𝑞 = −1 sector) 
| Ω ,𝜙 𝑝 𝑎 | = |⟨Ω|

1
𝐿.
2

./&

041!
𝑠.𝑒123. 𝑎 | 𝑝 is momentum of |𝑎⟩≠ 0For a given 𝑝

𝑝 =
2𝜋𝑛
𝐿T

, 𝑛 = 0,1,2, … , 𝐿5./

Ω -𝜙 𝑝 𝑎 computed by HOTRG algorithm 

7



1-particle state energy of Ising Model (𝑞 = −1 sector) 
| Ω ,𝜙 𝑝 𝑎 | = |⟨Ω|

1
𝐿.
2

./&

041!
𝑠.𝑒123. 𝑎 | 𝑝 is momentum of |𝑎⟩≠ 0For a given 𝑝

𝑝 =
2𝜋𝑛
𝐿T

, 𝑛 = 0,1,2, … , 𝐿5./

Ω -𝜙 𝑝 𝑎 computed by HOTRG algorithm 

𝑇 = 2.44, 𝐿 = 64, 𝜒 = 80

7



1-particle state energy of Ising Model (𝑞 = −1 sector) 
| Ω ,𝜙 𝑝 𝑎 | = |⟨Ω|

1
𝐿.
2

./&

041!
𝑠.𝑒123. 𝑎 | 𝑝 is momentum of |𝑎⟩≠ 0For a given 𝑝

𝑝 =
2𝜋𝑛
𝐿T

, 𝑛 = 0,1,2, … , 𝐿5./

Ω -𝜙 𝑝 𝑎 computed by HOTRG algorithm 

𝑇 = 2.44, 𝐿 = 64, 𝜒 = 80

Dispersion Relation

Continuum:
𝜔 = 𝑚6 + 𝑝6

Lattice:
𝜔 = cosh./(1 − cos 𝑝 + cosh	𝑚)
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Scattering Phase Shift 

𝜔 = 2 𝑘, +𝑚,
infinite volume limit 

exact rest mass 
𝑚 = 0.12621870

Relative 
momentum

Lüscher’s formula,
𝒆𝒊𝟐𝜹(𝒌) = 𝒆-𝒊𝒌𝑳𝒙

Phase shift

Relative 
Momentum

Elastic
inelastic

δ
Elastic region 
2𝑚 ≤ 𝜔 < 4𝑚

𝛿%&%#' = − (
)

 [C. R. Gattringer, C. B. Lang, 1993]
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Summary and future plan
q By using our scheme, the energy spectrum is obtained from eigenvalues of tensor network

q The the quantum number  is judged from the matrix elements of a proper spin operator

q The momentum of one-particle state energy can be identified

q The two-particle state energy with total momentum zero can be  identified

q By Lüscher’s formula, the scattering phase shift is obtained from two-particle state energy 

whose total momentum is zero

q Future works : application to 2d scalar fields, phase shift from non-rest frame, etc 

10
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Appendix



Identification of Quantum Numbers
Quantum number can be identified from Matrix elements of operator -𝒪' 
i.e. B�� = ⟨𝑏| -𝒪'|𝑎⟩  

System with Discrete Symmetry

Ex: (1+1)d Ising Model, Sym over 𝑍,, 𝑞 = ±1

Let F𝐷	 be a discrete transformation operator.

Discrete transformation of operator -𝑋 is  

F𝐷 -𝑋F𝐷-6 = 𝑞� -𝑋

F𝐷 𝑎 = 𝑞H|𝑎⟩

b -𝑋 𝑎 = b F𝐷-6F𝐷𝑋F𝐷-6F𝐷 𝑎 	
                 = 𝑞c𝑞�	𝑞H 𝑏 -𝑋 𝑎  

This gives us selection rule:

𝐛 𝑿 𝒂 ≠ 𝟎	 ⇒ 𝒒𝒃𝒒𝑿𝒒𝒂 = 𝟏 

𝑞�	Assumed to be known
Choose ⟨𝑏| as ⟨Ω| where 𝑞_ = 1
Then 𝑞H can be identified

Reason: 



Identification of  Energy spectrum 𝜔'  based on Quantum Numbers 
Identification can be done by computing matrix element of interpolating operator -𝒪' i.e. 
 B�� = ⟨𝑏| -𝒪'|𝑎⟩ .  
Reason:

For system with Continious symmetry
• Let	 F𝑄	be a conserved charge of 

continious symmetry and F𝑄	,k𝐻	 = 0
• If Quantum number of an operator F𝑋	is 
𝑞� then 

F𝑄	, F𝑋	 = 𝑞� F𝑋	
Assume |𝛺⟩ has no charge	 F𝑄 𝛺 = 0 ,  

-𝑄 -𝑋 Ω = 𝑞� F𝑋	|Ω⟩

For energy eigenstate 𝑎 , |𝑏⟩
⟨𝑏|( -𝑄 -𝑋 − -𝑋 -𝑄)|𝑎⟩ = ⟨𝑏|𝑞� F𝑋	|𝑎⟩

(𝑞H−𝑞c − 𝑞�)⟨𝑏| F𝑋	|𝑎⟩ = 0
Selection Rule:
If 𝑏 F𝑋	 𝑎 ≠ 0, then (𝑞H−𝑞c − 𝑞�) = 0
If 𝑏 = Ω  then 𝑞H = 𝑞�



Tensor Network Representation for  ⟨𝑏| ,𝒪+|𝑎⟩
𝑏 -𝒪' 𝑎 = 𝑈(	 -𝒪'𝑈 cH

= 𝑈(𝒯-`𝒯` -𝒪'𝒯 `b6 𝒯- `b6 𝑈 cH
Using	𝒯 𝒯-6 = 𝐼  

𝑚 = 𝐿*/2 ( :𝒪+	is in the middle of square lattice)

𝑈𝜆.-𝑈' Y𝑌' -
Y𝑌' -:/ 𝑈𝜆.(-:/)𝑈'

= 𝜆-(`-
6
,)𝑊(𝒜`-6𝒜a𝒜`𝑊𝜆-(`b

6
,) cH

Impurity Tensor Network

𝒜,𝒜-./
𝒜-

𝒜 = 𝑊𝜆𝑊!

All terms are obtained from Tensor Network

= 𝜆-`𝑈(𝑌 𝑌(𝑌
`-6

𝑌( -𝒪'𝑌 𝑌(𝑌
`
𝑌(𝑈𝜆-(`b6)

cH
𝑈 𝜆𝑊' 𝒜 𝒜𝒜′ 𝑈' 𝜆𝑊

𝒯 = 𝑈𝜆𝑈'



Tensor Network Representation for Momentum of 1 −particle state

| Ω 𝑠 𝑝 	 𝑎 | = |⟨Ω|
1
𝐿.
2

./&

041!
𝑠 𝑥 𝑒123. 𝑎 | 𝑝 is momentum of |𝑎⟩≠ 0

+ + + +…

×𝑒.=> ×𝑒.=6>
×𝑒.=(+!./)>

= +

×𝑒.=>6"#$

=

coarse-graining  𝛀 ?𝓞𝒒(𝒑) 𝒂  .  

,𝒪@ 𝑝 = 𝑠(𝑝) ⟹ Momentum operator for single particle state

[S. Morita, N. Kawashima, 2019] 

Ω 𝑠 0 𝑎 +	 Ω 𝑠 1 𝑎 𝑒.=> +	 Ω 𝑠 2 𝑎 𝑒.=6> +	 Ω 𝑠 𝐿5 − 1 𝑎 𝑒.=(+!./)>	
𝑥 = 0

𝑥 = 1

⋮

For a given 𝑝



Tensor Network to 
compute matrix 
elements of double 
spin operator



Relative Error Over χ

• The error is getting smaller 
when 𝜒 is increased. 

• Error near 𝑇U is smaller 
compared to 𝑇 > 𝑇U and 𝑇 <
𝑇U

• 𝜒 = 80 is large enough to get 
relatively small error for 
eigenstate up to 𝑎 = 20 and 
its computational cost is still 
manageable. 

𝜒



Energy Spectrum
𝒜[#]

After 
HOTRG

𝒜[!] 𝒜[!] = 𝑊[!]𝜆[!]𝑊[!]'
Diagonalize

𝜔?
[!] =

1
𝐿0
log

𝜆)
[!]

𝜆?
[!] ≈ 𝜔?

Original energy 
gap before HOTRG 

𝜆[!] = 𝑒@["]

Energy Gap over Temperature, 
𝜒 = 80

Relative Error of Energy Gap

𝛿𝜔! =
𝛿𝜔!

"#$%& − 𝛿𝜔!
'(!)$

|𝛿𝜔!
'(!)$ |

𝛿𝑓 =
𝛿𝑓*

["#$%&] − 𝛿𝑓*
'(!)$

|𝛿𝑓*
'(!)$ |

Relative Error of Free Energy

𝑓- = −𝑇
log 𝑍-
𝑉

𝑓A
[B5?CD], 𝜔?

[B5?CD] [Kaufman,	Phys.	Rev.	
76,	(1949)]



Transfer Matrix of Ising Model

𝑍 =)
{M}

𝑒O ∑%∈' ∑()*
+ M QRST M(Q) = 𝑇𝑟 𝒯U,

The transfer matrix of Ising Model is given by
𝒯4(4	
= z

T*+

W1-6
𝑒�4 .b6,T 4(.,T)

× z
T*+

W1-6
𝑒
�
,4 .b6,Tb6 4(.b6,T)𝑒

�
,4 .,Tb6 4(.,T)

𝒯MM"

𝑠! 𝑠!"

𝑒�4'(4'

𝑒
�4'(4)(
,𝑠# 𝑠#"

The spin configuration on Euclidean time slice at  𝜏 + 1	 and 𝜏 is 
𝑠a = 𝑠 𝜏 + 1, 𝑥 |𝑥 = 0,1,2, … , 𝐿T − 1
𝑠	 = 𝑠 𝜏	 , 𝑥 |𝑥 = 0,1,2, … , 𝐿T − 1 	



Initial Tensor Network

𝑠2 𝑠A

𝑒�4243 = 𝑢42  𝜎 	 𝜎 	𝑢 43
( ,     𝑠 = ±1

𝑠2 𝑠A𝜎!	𝑢!#!
$𝑢#"! 𝜎!	

𝑠B𝑠C
𝜎%	𝑢%##

$ 𝑢#& 𝜎&	

𝑢#!% 𝜎%	

𝑢#' 𝜎'	𝜎!	𝑢!#
$

𝜎(	𝑢(#
$

𝑚

𝑛

𝑜

𝑝

𝐴D?)3

𝐴D?)3 = 𝜎D𝜎?𝜎)𝜎32
#

𝑢#D𝑢#?𝑢)#
E 𝑢3#

E

𝑠

𝑢#EC =
1
2
1 1
1 −1

𝜎C =
2 cosh𝛽 0

0 2 sinh𝛽



Scattering Phase Shift

In scattering theory, the 𝑆 −matrix can be written as

=𝑒,-.  
phase shift

𝑆 =
𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔	𝑤𝑎𝑣𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	
𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔	𝑤𝑎𝑣𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	

• In Ising Model, 𝛿¢4¢)w = − £
,

 or 
equivalently 𝑆 = −1 

• 𝛿 < 0 means system has repulsive 
potential

• And  phase −𝜋/2 means outgoing 
wave function is being pulled out 
by 𝜋/2.

𝛿 =
𝜋
2



Scattering Phase Shift 

𝜔 = 2 𝑘, +𝑚,
infinite volume limit 

exact rest mass 
𝑚 = 0.12621870

Relative 
momentum

Elastic

Inelastic

Elastic region :2𝑚 ≤ 𝜔 < 4𝑚
𝑚 is rest mass


