Control Variates with Neural Networks

Hyunwoo Oh in collaboration with Paulo Bedaque, Srijit Paul

based on *"Leveraging neural control variates for enhanced precision in lattice field theory"* Phys. Rev. D **109**, 094519 (2024)

July 30 2024, Lattice 2024

CONIVERSITY OF

Signal-to-Noise Problem

- It prevents first-principle calculations
- Example: proton propagator

Parisi (1984), Lepage (1989), M. Endres, D. Kaplan, J. Lee, A. Nicholson, arXiv:1112.4023

Number of configurations

• Monte Carlo only can improve errors by $1/\sqrt{N}$

MC error

Control Variates (CV)

• If one define $O \equiv O - f$, where $\langle f \rangle = 0$, ˜ $\equiv O - f$, where $\langle f \rangle = 0$

• Its variance is

˜

\tilde{O}) = Var(O) + $\langle f^2 \rangle$ - 2 $\langle Of \rangle$

$\langle f^2 \rangle - 2 \langle Of \rangle \leq 0$

⟨*O* ⟩ = ⟨*O*⟩

Var(*O*

- $Var(O) \leq Var(O)$ if $\widetilde{\bm{\zeta}}$) ≤ Var(*O*)
- Perfect control variates exist: $f_P = O \langle O \rangle$

T. Bha, S. Lawrence, J. Yoo, Phys. Rev. D **109**, L031505 (2024)

Schwinger-Dyson Control Variates

- In general, it is hard to find observables with the expectation value zero.
- It was suggested to use lattice Schwinger-Dyson equation.

 $f(\phi) = \sum$ *ⁱ* (

is a control variate with a proper boundary condition.

• Similarly, for $g : \mathbb{R}^n \to \mathbb{R}^n$, $f(\phi) = \nabla \cdot g - g \cdot \nabla S$

[∫] *^D^ϕ δ*

• If $g: \mathbb{R}^n \to \mathbb{R}$,

$$
\frac{\partial}{\partial \phi} \left(g \, e^{-S(\phi)} \right) = 0
$$

$$
\left(\frac{\partial g}{\partial \phi_i} - g \frac{\partial S}{\partial \phi_i}\right)
$$

$$
\cdot \; g - g \cdot \nabla S
$$

T. Bha, S. Lawrence, J. Yoo, Phys. Rev. D **109**, L031505 (2024)

Example 1: 2D Real Scalar Field

• Model:

• Observable: correlation function

 $S =$ 1 $\overline{2}$ $\overline{2}$ χ *,* $\hat{\mu}$ $(\phi_{x+\hat{\mu}} - \phi_x)$ 2 + *m*2 $\overline{2}$ *x* ϕ_x^2 $\frac{2}{x}$ + *λ* $\overline{4!}$ $\overline{4!}$ *x* ϕ^4_x *x*

$$
O(t) = \sum_{t'} \left(\sum_x \phi(t) \right)
$$

 $\phi(t'+t,x)$) (∑ *x* $\boldsymbol{\phi}(t',x)$ \int

5

Parametrize Control Variates

• Ansatz for control variates from the knowledge of free theory was suggested

• Instead of using educated guess, **parametrize g as a neural network**

$$
g(\phi) = \sum_{x} a_x \phi_x + \cdots \text{ and } f = \sum_{i} \left(\frac{\partial g}{\partial \phi_i} - g \frac{\partial S}{\partial \phi_i} \right)
$$

T. Bha, S. Lawrence, J. Yoo, Phys. Rev. D **109**, L031505 (2024), P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

$g(\phi) = NN(\phi)$

Neural Network

• $O_n = \sigma(W_n I_n + b_n) = I_{n+1}$

Imposing Translational Symmetry

• $f(T_x[\phi]) = f(\phi)$ should be imposed. $\leftrightarrow g(T_y[\phi])_x = g[\phi]_{x+y}$ (covariance) translation operator

• Define a function $g_0: \mathbb{R}^n \to \mathbb{R}$

• It can be easily shown that $g(\phi)$ is translational covariant.

P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

$g(\phi)_x \equiv g_0(T_x[\phi])$ and $f(\phi) = \nabla \cdot g - g \cdot \nabla S$

Imposing Z_2 Symmetry

• $f(-\phi) = f(\phi)$ should be imposed:

• It requires zero biases for layers:

• It requires an odd activation function:

• $\sigma(-x) = -\sigma(x)$ and $\sigma(\pm\infty) = \pm \infty$.

 $\leftrightarrow g(-\phi) = -g(\phi)$

 $\phi_i \rightarrow W_{ij} \phi_j$

 $\sigma(x) = \operatorname{arcsinh}(x)$

Minimize Variance

• Natural choice of loss function is the variance:

 $f =$

 $L(w, \mu) = \langle (O - f - \mu) \rangle$ 2 ⟩ not used for estimation

1

N

N

i=1

$$
\sum f(\phi) = \overline{O} \neq 0
$$

$$
-f)^2\rangle - \langle O - f \rangle^2
$$

$$
= \langle O \rangle^2
$$

neural network parameters

• However, if overfitting happens, $O(\phi_i) = f(\phi_i)$ for all training samples i,

very common in ML, dangerous

• Add tunable parameter μ to avoid overfitting:

Variance Reduction

- Observable: $O(L_0/2)$
-

P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

Mass Fit 12

• Find a mass fit using

P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

Mass Fit 13

• Find a mass fit using

P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

use CV at $t = 10$ as an initial network for training CV at $t = 9,11$

Mass Fit 14

• Transfer learning was implemented:

Mass Fit

• Transfer learning was implemented:

P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

use CV at $t = 10$ as an initial network for training CV at $t = 9,11$

Curse of Dimensionality

- 40×40 lattice, 10^3 samples for training, 10^3 samples for estimation
- L2 regularization was implemented: $\delta \sum w^2$ where w are network parameters • *w* 6 5 4 $\sigma(O)/\sigma(O$ – 3 2 1 $\lambda = 0.5$ $\lambda = 24.0$ 0 0 200 400 600 800 1000 Epochs

P. Bedaque, HO, Phys. Rev. D **109**, 094519 (2024)

Model 2: 2D U(1) Pure Gauge Theory

• Model:

i $(1 - \cos(P_i))$ \int

 $P_i = U_1 U_2 U_3^{\dagger} U_4^{\dagger}$

• Observable: Wilson loop

 $O(A) = \prod P_j = \exp(i)$ ∑ *j* θ_i^P *j*)

j

Open Boundary Condition with Gauge Fixing

• Integration measure can be written in terms of plaquette variables, and action and observable are separable:

• Ansatz:

$$
Z = \iint_{i} dP_i \exp\left(\beta \sum_{i} \cos(P_i)\right)
$$

$$
f(\phi) = \exp(i \sum_{j} \phi_{j}) - \prod_{j} (\exp(i\phi_{j}) - f_{1}(\phi_{j}))
$$

with $f_{1}(\phi) = \frac{dg}{d\phi} - g\frac{dS}{d\phi} \rightarrow \langle f_{1} \rangle = 0 \Rightarrow \langle f \rangle = 0$

Open Boundary Condition with Gauge Fixing

Schwinger-Dyson CV Is Not the Most General 20 20

• Explore a part of the whole control variates space

Conclusion

- Summary
- 1. Control variates method is a promising way to reduce the variance of observables.
- 2. It can be formulated via neural networks
- 3. Showed a possibility on two toy models
- 4. Discussed issues when applying Schwinger-Dyson control variates
- Future study
- 1. Find control variates for plaquette correlators on 3D U(1) gauge theory
- 2. Find control variates using link variables
- 3. Find different constructions of control variates

