Control Variates with Neural Networks

Hyunwoo Oh in collaboration with Paulo Bedaque, Srijit Paul

based on "Leveraging neural control variates for enhanced precision in lattice field theory" Phys. Rev. D 109, 094519 (2024)

July 30 2024, Lattice 2024

WARYLAND

Signal-to-Noise Problem

- It prevents first-principle calculations
- Example: proton propagator

MC error

Number of configurations

• Monte Carlo only can improve errors by $1/\sqrt{N}$

Parisi (1984), Lepage (1989), M. Endres, D. Kaplan, J. Lee, A. Nicholson, arXiv:1112.4023

Control Variates (CV)

• If one define $\tilde{O} \equiv O - f$, where $\langle f \rangle = 0$,

• Its variance is

• $Var(\tilde{O}) \leq Var(O)$ if • Perfect control variates exist: $f_P = O - \langle O \rangle$

T. Bha, S. Lawrence, J. Yoo, Phys. Rev. D 109, L031505 (2024)

 $\langle \tilde{O} \rangle = \langle O \rangle$

$Var(\tilde{O}) = Var(O) + \langle f^2 \rangle - 2 \langle Of \rangle$

$\langle f^2 \rangle - 2 \langle Of \rangle \le 0$

Schwinger-Dyson Control Variates

- In general, it is hard to find observables with the expectation value zero.
- It was suggested to use lattice Schwinger-Dyson equation.

 $D\phi - \frac{o}{\delta \phi}$

• If $g: \mathbb{R}^n \to \mathbb{R}$,

 $f(\phi) = \sum_{i}$

is a control variate with a proper boundary condition.

• Similarly, for $g: \mathbb{R}^n \to \mathbb{R}^n$, $f(\phi) = \nabla$

T. Bha, S. Lawrence, J. Yoo, Phys. Rev. D 109, L031505 (2024)

$$\left(g\,\mathrm{e}^{-S(\phi)}\right)=0$$

$$\left(\frac{\partial g}{\partial \phi_i} - \frac{\partial S}{g \partial \phi_i}\right)$$

$$\cdot g - g \cdot \nabla S$$

Example 1: 2D Real Scalar Field

• Model:

 $S = \frac{1}{2} \sum_{x \in \hat{\mu}} \left(\phi_{x+\hat{\mu}} - \phi_x \right)^2 + \frac{m^2}{2} \sum_{x \in \hat{\mu}} \phi_x^2 + \frac{\lambda}{4!} \sum_{x \in \hat{\mu}} \phi_x^4$

Observable: correlation function

$$O(t) = \sum_{t'} \left(\sum_{x} \phi(t) \right)^{t'}$$

 $\psi(t'+t,x)\left(\sum_{x}\phi(t',x)\right)$

5

Parametrize Control Variates

Ansatz for control variates from the knowledge of free theory was suggested

$$g(\phi) = \sum_{x} a_x \phi_x + \cdots$$
 and $f = \sum_{i} \left(\frac{\partial g}{\partial \phi_i} - g \frac{\partial S}{\partial \phi_i} \right)$

Instead of using educated guess, parametrize g as a neural network

T. Bha, S. Lawrence, J. Yoo, Phys. Rev. D 109, L031505 (2024), P. Bedaque, HO, Phys. Rev. D 109, 094519 (2024)

$g(\phi) = NN(\phi)$

Neural Network

• $O_n = \sigma(W_n I_n + b_n) = I_{n+1}$

Imposing Translational Symmetry

• $f(T_x[\phi]) = f(\phi)$ should be imposed. $\leftrightarrow g(T_{v}[\phi])_{x} = g[\phi]_{x+v} \text{ (covariance)}$ translation operator

• Define a function $g_0 : \mathbb{R}^n \to \mathbb{R}$

• It can be easily shown that $g(\phi)$ is translational covariant.

P. Bedaque, HO, Phys. Rev. D 109, 094519 (2024)

$g(\phi)_x \equiv g_0(T_x[\phi])$ and $f(\phi) = \nabla \cdot g - g \cdot \nabla S$

Imposing Z_2 Symmetry

• $f(-\phi) = f(\phi)$ should be imposed:

• It requires zero biases for layers:

• It requires an odd activation function:

 $\sigma(x) =$

• $\sigma(-x) = -\sigma(x)$ and $\sigma(\pm\infty) = \pm\infty$.

 $\leftrightarrow g(-\phi) = -g(\phi)$

 $\phi_i \to W_{ij}\phi_j$

 $\sigma(x) = \operatorname{arcsinh}(x)$

Minimize Variance

Natural choice of loss function is the variance:

neural network parameters

• However, if overfitting happens, $O(\phi_i) = f(\phi_i)$ for all training samples i,

very common in ML, dangerous

• Add tunable parameter μ to avoid overfitting:

$$-f)^{2}\rangle - \langle O - f \rangle^{2}$$
$$= \langle O \rangle^{2}$$

$$\bar{f} = \frac{1}{N} \sum_{i=1}^{N} f(\phi) = \bar{O} \neq 0$$

not used for estimation $L(w,\mu) = \langle (O - f - \mu)^2 \rangle$

Variance Reduction

- Observable: $O(L_0/2)$

11

• Find a mass fit using

• Find a mass fit using

• Transfer learning was implemented:

P. Bedaque, HO, Phys. Rev. D 109, 094519 (2024)

use CV at t = 10 as an initial network for training CV at t = 9,11

• Transfer learning was implemented:

P. Bedaque, HO, Phys. Rev. D 109, 094519 (2024)

use CV at t = 10 as an initial network for training CV at t = 9,11

Curse of Dimensionality

- 40×40 lattice, 10^3 samples for training, 10^3 samples for estimation
- \mathcal{W} $\sigma(O)/\sigma(O \lambda = 0.5$ $\lambda = 24.0$ 600 200 400 800 0

Epochs

Model 2: 2D U(1) Pure Gauge Theory

• Model:

$$Z = \int \prod_{i} dU_{i} \exp\left(\frac{1}{g^{2}}\right)^{2} dU_{i} \exp\left(\frac{1}{g^{2}}\right)^{2}$$
where $\beta = \frac{2}{g^{2}}$

Observable: Wilson loop

$$O(A) = \prod_{j}$$

 $\left(-\beta \sum_{i} \left(1 - \cos(P_i)\right)\right)$

-, $P_i = U_1 U_2 U_3^{\dagger} U_4^{\dagger}$

 $P_j = \exp(i\sum_{j=1}^{P}\theta_j^P)$

Open Boundary Condition with Gauge Fixing

 Integration measure can be written in terms of plaquette variables, and action and observable are separable:

$$Z = \int \prod_{i} dP_{i} \exp\left(\beta \sum_{i} \cos(P_{i})\right)$$

• Ansatz:

$$f(\phi) = \exp(i\sum_{j} \phi_{j}) - \prod_{j} \left(\exp(i\phi_{j}) - f_{1}(\phi_{j})\right)$$

with
$$f_{1}(\phi) = \frac{dg}{d\phi} - g\frac{dS}{d\phi} \rightarrow \langle f_{1} \rangle = 0 \Rightarrow \langle f \rangle = 0$$

Open Boundary Condition with Gauge Fixing

Schwinger-Dyson CV Is Not the Most General

• Explore a part of the whole control variates space

Conclusion

- Summary
- 1. Control variates method is a promising way to reduce the variance of observables.
- 2. It can be formulated via neural networks
- 3. Showed a possibility on two toy models
- 4. Discussed issues when applying Schwinger-Dyson control variates
- Future study
- 1. Find control variates for plaquette correlators on 3D U(1) gauge theory
- 2. Find control variates using link variables
- 3. Find different constructions of control variates

