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• It prevents first-principle calculations

• Example: proton propagator

• Monte Carlo only can improve errors by 

Gp(t)/ϵp(t) ∼ N exp (−(mp − 3mπ /2) t)

1/ N

Signal-to-Noise Problem 2

Parisi (1984), Lepage (1989), M. Endres, D. Kaplan, J. Lee, A. Nicholson, arXiv:1112.4023
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Control Variates (CV)

• If one define , where ,

• Its variance is

•   if

 

• Perfect control variates exist:  

Õ ≡ O − f ⟨ f⟩ = 0

⟨Õ⟩ = ⟨O⟩

Var(Õ) = Var(O)+⟨ f2⟩ − 2⟨Of⟩

Var(Õ) ≤ Var(O)

⟨ f2⟩ − 2⟨Of⟩ ≤ 0

fP = O − ⟨O⟩
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Schwinger-Dyson Control Variates

• In general, it is hard to find observables with the expectation value zero.

• It was suggested to use lattice Schwinger-Dyson equation.

• If ,

 is a control variate with a proper boundary condition.

• Similarly, for , 

∫ Dϕ
δ

δϕ (g e−S(ϕ)) = 0

g : ℝn → ℝ

f(ϕ) = ∑
i ( ∂g

∂ϕi
− g

∂S
∂ϕi )

g : ℝn → ℝn f(ϕ) = ∇ ⋅ g − g ⋅ ∇S
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Example 1: 2D Real Scalar Field

• Model:

• Observable: correlation function

S =
1
2 ∑

x, ̂μ
(ϕx+ ̂μ − ϕx)

2
+

m2

2 ∑
x

ϕ2
x +

λ
4! ∑

x

ϕ4
x

O(t) = ∑
t′ 

(∑
x

ϕ(t′ + t, x)) (∑
x

ϕ(t′ , x))
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Parametrize Control Variates

• Ansatz for control variates from the knowledge of free theory was suggested

   and   

• Instead of using educated guess, parametrize g as a neural network

g(ϕ) = ∑
x

axϕx + ⋯ f = ∑
i ( ∂g

∂ϕi
− g

∂S
∂ϕi )

g(ϕ) = NN(ϕ)
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Neural Network

• On = σ(WnIn + bn) = In+1
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Imposing Translational Symmetry

•  should be imposed.

  (covariance)

• Define a function 

   and   

• It can be easily shown that  is translational covariant.

f(Tx[ϕ]) = f(ϕ)

↔ g(Ty[ϕ])x = g[ϕ]x+y

g0 : ℝn → ℝ

g(ϕ)x ≡ g0(Tx[ϕ]) f(ϕ) = ∇ ⋅ g − g ⋅ ∇S

g(ϕ)
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translation operator



Imposing  SymmetryZ2

•  should be imposed:

 

• It requires zero biases for layers:

  

• It requires an odd activation function:

•  and .

f(−ϕ) = f(ϕ)

↔ g(−ϕ) = − g(ϕ)

ϕi → Wijϕj

σ(x) = arcsinh(x)

σ(−x) = − σ(x) σ(±∞) = ± ∞
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Minimize Variance

• Natural choice of loss function is the variance:

• However, if overfitting happens,  for all training samples i,

• Add tunable parameter  to avoid overfitting:

 

L(w) = ⟨(O − f )2⟩ − ⟨O − f⟩2

O(ϕi) = f(ϕi)

f =
1
N

N

∑
i=1

f(ϕ) = O ≠ 0

μ

L(w, μ) = ⟨(O − f − μ)2⟩
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neural network parameters
= ⟨O⟩2

not used for estimation

very common in ML, dangerous



Variance Reduction

• Observable: 

•  lattice,  samples for training,  samples for estimation

O(L0/2)

20 × 20 104 103
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Mass Fit 12
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40 × 10, m2 = 0.01, λ = 0.1
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• Find a mass fit using

O(t) = A(e−mt + e−m(L0−t))
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Mass Fit 14
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• Transfer learning was implemented:

use CV at  as an initial network for training CV at t = 10 t = 9,11



Mass Fit

• Transfer learning was implemented:

use CV at  as an initial network for training CV at t = 10 t = 9,11
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Curse of Dimensionality

•  lattice,  samples for training,  samples for estimation 

• L2 regularization was implemented:  where  are network parameters

40 × 40 103 103

δ∑
w

w2 w
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Model 2: 2D U(1) Pure Gauge Theory

• Model: 

 

where , 

• Observable: Wilson loop

Z = ∫ ∏
i

dUi exp (−β∑
i

(1 − cos(Pi)))
β =

2
g2

Pi = U1U2U†
3 U†

4

O(A) = ∏
j

Pj = exp(i∑
j

θP
j )
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Open Boundary Condition with Gauge Fixing

• Integration measure can be written in terms of plaquette variables,                    
and action and observable are separable:

• Ansatz:

with     

Z = ∫ ∏
i

dPi exp (β∑
i

cos(Pi))
f(ϕ) = exp(i∑

j

ϕj) − ∏
j

(exp(iϕj) − f1(ϕj))
f1(ϕ) =

dg
dϕ

− g
dS
dϕ

→ ⟨ f1⟩ = 0 ⇒ ⟨ f⟩ = 0
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Open Boundary Condition with Gauge Fixing

•  where ⟨O(A)⟩ = μA μ ≡
I1(β)
I0(β)
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• Explore a part of the whole control variates space 

Schwinger-Dyson CV Is Not the Most General 20

∑
i ( ∂g

∂ϕi
− g

∂S
∂ϕi ) ?= fp



Conclusion

• Summary

1. Control variates method is a promising way to reduce the variance of observables.

2. It can be formulated via neural networks

3. Showed a possibility on two toy models

4. Discussed issues when applying Schwinger-Dyson control variates

• Future study

1. Find control variates for plaquette correlators on 3D U(1) gauge theory

2. Find control variates using link variables

3. Find different constructions of control variates
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