

Machine Learning Enhanced Optimization of Variational Quantum Eigensolvers

Kim A. Nicoli

University of Bonn, TRA Matter, HISKP (Helmholtz Institute for Radiation and Nuclear Physics)

Talk based on: K.A. Nicoli, et al, NeurIPS '23

RHEINISCHE FRIEDRICH-WILHELMS-**UNIVERSITÄT BONN**

TRANSDISCIPLINARY **RESEARCH AREA**

Lattice Field Theories on Quantum Computers

Review on Quantum Computing for Lattice Field Theory

Lena Funcke,^{*a,b,**} Tobias Hartung,^{*c*} Karl Jansen^{*d*} and Stefan Kühn^{*d,e*}

[1] Funcke L. et al., PoS (LATTICE2022)

Kim A. Nicoli - University of Bonn

Quantum simulations of lattice field thoeries

Dorota M Grabowska*

[2] Grabowska D., PoS (LATTICE2023)

Lattice Field Theories on Quantum Computers

. . .

Review on Quantum Computing for Lattice Field Theory

Lena Funcke,^{*a,b,**} Tobias Hartung,^{*c*} Karl Jansen^{*d*} and Stefan Kühn^{*d,e*}

[1] Funcke L. et al., PoS (LATTICE2022)

Recent progress holds promise for successful deployment of quantum simulations of lattice field theories:

[3] Banuls et al., Simulating lattice gauge theories within quantum technologies, Eur. Phys. J. D (2020)

[4] Klco et al., Standard model physics and the digital quantum revolution: thoughts about the interface, Rep. Prog. Phys. (2020)

[5] <u>Atas et al.</u>, SU(2) hadrons on a quantum computer via a variational approach, Nat. Comms. (2021)

[6] Farrell et al., Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits, arXiv:2307.03236 (2024)

[7] Crippa et al., Towards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing *methods,* arXiv: 2404.17545 (2024)

Kim A. Nicoli - University of Bonn

Dorota M Grabowska*

[2] <u>Grabowska D., PoS (LATTICE2023)</u>

Variational Quantum Algorithms

rightharpoind contract contr

Kim A. Nicoli - University of Bonn

<u>VQE</u>: Use of a feedback loop between a classical computer and a quantum processor, where the latter is used to efficiently evaluate a cost function.

Kim A. Nicoli - University of Bonn

<u>VQE</u>: Use of a feedback loop between a classical computer and a quantum processor, where the latter is used to efficiently evaluate a cost function.

(1) Initial state preparation
$$\rightarrow |\psi_0\rangle$$

(2) Quantum state transformation $\rightarrow |\psi_{\mathbf{x}}\rangle = G(\mathbf{x})$

Kim A. Nicoli - University of Bonn

 $G(\mathbf{X})$

 $= G(\mathbf{x}) |\psi_0\rangle$

LATTICE 24

(1) Initial state preparation
$$\rightarrow |\psi_0\rangle$$

(2) Quantum state transformation $\rightarrow |\psi_{\mathbf{x}}\rangle = G(\mathbf{x})$
(3) Measure final energy $\rightarrow E(\mathbf{x}) = \langle \psi_{\mathbf{x}} |$

Kim A. Nicoli - University of Bonn

$$r(\mathbf{x})$$

 $\mathbf{x})|\psi_0
angle$

 $|H|\psi_{\mathbf{x}}\rangle = \langle \psi_0 | G(\mathbf{x})^{\dagger} H G(\mathbf{x}) | \psi_0 \rangle$

(1) Initial state preparation
$$\rightarrow |\psi_0\rangle$$

(2) Quantum state transformation $\rightarrow |\psi_{\mathbf{x}}\rangle = G(\mathbf{x})|\psi_0\rangle$
(3) Measure final energy $\rightarrow E(\mathbf{x}) = \langle \psi_{\mathbf{x}} | H | \psi_{\mathbf{x}} \rangle = \langle \psi_0 | G(\mathbf{x})^{\dagger} H G(\mathbf{x}) | \psi_0 \rangle$
(4) Find \mathbf{x} that minimizes $E \rightarrow \operatorname*{argmin}_{\mathbf{x}} E(\mathbf{x})$

Kim A. Nicoli - University of Bonn

<u>VQE</u>: Use of a feedback loop between a classical computer and a quantum processor, where the latter is used to efficiently evaluate a cost function.

$$r(\mathbf{x})$$

Variational Minimization Problem

LATTICE 24

(1) Initial state preparation
$$\rightarrow |\psi_0\rangle$$

(2) Quantum state transformation $\rightarrow |\psi_x\rangle = G(\mathbf{x})$
(3) Measure final energy $\rightarrow E(\mathbf{x}) = \langle \psi_x | \mathbf{x} \rangle$
(4) Find \mathbf{x} that minimizes $E \rightarrow \underset{\mathbf{x}}{\operatorname{argmin}} E(\mathbf{x})$

(1) Initial state preparation
$$\rightarrow |\psi_0\rangle$$

(2) Quantum state transformation $\rightarrow |\psi_x\rangle = G(\mathbf{x} \otimes \mathbf{x})$
(3) Measure final energy $\rightarrow E(\mathbf{x}) = \langle \psi_x | \mathbf{x} \otimes \mathbf{x} \rangle$
(4) Find \mathbf{x} that minimizes $E \rightarrow \operatorname*{argmin}_{\mathbf{x}} E(\mathbf{x} \otimes \mathbf{x})$

Previous work: NFT Algorithm

<u>Nakanishi et al., (2020)</u> show that the VQE objective $E(\cdot)$ obeys

i.e., for unitary gates, the energy function is a tensor product of sin and cos.

Kim A. Nicoli - University of Bonn

- $\exists \boldsymbol{b} \in \mathbb{R}^{3^{D}} \text{ s.t. } E(\boldsymbol{x}) = \boldsymbol{b}^{\top} \cdot \operatorname{vec}(\otimes_{d=1}^{D} (1, \cos x_{d}, \sin x_{d})^{\top}), \quad \forall \boldsymbol{x} \in [0, 2\pi)^{D}$

Previous work: NFT Algorithm

<u>Nakanishi et al., (2020)</u> show that the VQE objective $E(\cdot)$ obeys

i.e., for unitary gates, the energy function is a tensor product of sin and cos.

Optimization of circuit parameters, i.e., sequentially (randomly) choose one parameter and optimize on 1-D submanifolds, keeping the other parameters fixed.

Kim A. Nicoli - University of Bonn

- $\exists \boldsymbol{b} \in \mathbb{R}^{3^{D}} \text{ s.t. } E(\boldsymbol{x}) = \boldsymbol{b}^{\top} \cdot \operatorname{vec}(\otimes_{d=1}^{D} (1, \cos x_{d}, \sin x_{d})^{\top}), \quad \forall \boldsymbol{x} \in [0, 2\pi)^{D}$

Kim A. Nicoli - University of Bonn

Start from the current best point on **subspace** identified by i

Kim A. Nicoli - University of Bonn

Kim A. Nicoli - University of Bonn

Nakanishi et al., Phys. Rev. Res 2, 043158 (2020)

LATTICE 24

Kim A. Nicoli - University of Bonn

Measurement Noise Hardware Noise

Kim A. Nicoli - University of Bonn

LATTICE 24

Measurement Noise Hardware Noise

Kim A. Nicoli - University of Bonn

Learn optimal α from previous measurements?

Measurement Noise Hardware Noise

Kim A. Nicoli - University of Bonn

Learn optimal α from previous measurements?

Deal with noisy measurements?

Measurement Noise Hardware Noise

Kim A. Nicoli - University of Bonn

Learn optimal α from previous measurements?

Deal with noisy measurements?

Physics Informed Bayesian Optimization

We tackle the <u>classical optimization problem</u> from a <u>Bayesian Optimization</u> standpoint.

Kim A. Nicoli - University of Bonn

Given a set of (costly) measurements and a surrogate model, BO helps to identify at which points are worth measuring next.

-
_

Physics Informed Bayesian Optimization

We tackle the <u>classical optimization problem</u> from a <u>Bayesian Optimization</u> standpoint.

Our research question:

Which point should we <u>measure next</u>, on the quantum computer, to <u>maximize the information</u> gain and minimize the quantum computer calls needed to minimize the objective?

-	-	

Gaussian Processes and Bayesian Optimization

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Gaussian Process Regression (GPR) uses a GP surrogate model $p(E(\cdot)|\mathbf{X},\mathbf{y}) = \mathrm{GF}$

to infer a target function $E(\cdot)$ from a set of observations $\{X, y\}$

$$P(E(\cdot); \mu_{\mathbf{X}}(\cdot), s_{\mathbf{X}}(\cdot, \cdot))$$

Gaussian Processes and Bayesian Optimization

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Gaussian Process Regression (GPR) uses a GP surrogate model $p(E(\cdot)|\mathbf{X},\mathbf{y}) = \mathrm{GF}$

to infer a target function $E(\cdot)$ from a set of observations $\{X, y\}$

$$P(E(\cdot); \mu_{\mathbf{X}}(\cdot), s_{\mathbf{X}}(\cdot, \cdot))$$

- The mean $\mu_{\mathbf{X}}(\cdot)$ and covariance $s_{\mathbf{X}}(\cdot)$ of the GPR depend on a kernel function $k(\cdot, \cdot)$

Gaussian Processes and Bayesian Optimization

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Gaussian Process Regression (GPR) uses a GP surrogate model $p(E(\cdot)|\mathbf{X},\mathbf{y}) = \mathrm{GF}$

to infer a target function $E(\cdot)$ from a set of observations $\{X, y\}$

Choosing the right kernel function is <u>crucial</u> in order to leverage the learning capabilities of the GP and of GP Regression

$$P(E(\cdot); \mu_{\mathbf{X}}(\cdot), s_{\mathbf{X}}(\cdot, \cdot))$$

- The mean $\mu_{\mathbf{X}}(\cdot)$ and covariance $s_{\mathbf{X}}(\cdot)$ of the GPR depend on a kernel function $k(\cdot, \cdot)$

The VQE Kernel

<u>Nakanishi et al., (2020)</u> show that the VQE objective $E(\cdot)$ obeys

$$\exists \boldsymbol{b} \in \mathbb{R}^{3^{D}} \text{ s.t. } E(\boldsymbol{x}) = \boldsymbol{b}^{\top} \cdot \operatorname{vec}(\otimes_{d=1}^{D} (1, \cos x_{d}, \sin x_{d})^{\top}), \quad \forall \boldsymbol{x} \in [0, 2\pi)^{D}$$

We thus derive a covariance function $k(\cdot, \cdot)$ fulfilling the same functional

$$k^{\text{VQE}}(\boldsymbol{x}, \boldsymbol{x}') = \sigma_0^2 \prod_{d=1}^D \left(\frac{\gamma^2 + 2\cos(x_d - x'_d)}{\gamma^2 + 2} \right)$$

See Nicoli et al., (2023) for detailed proofs.

Expected Maximum Improvement over Confident Regions

- ➡ Special <u>acquisition function</u> using the VQE kernel and the concept of <u>confident regions</u>
- → Use EMICoRe to perform a grid search and find the **best pair of shifts** $\{\hat{\alpha}_1^t, \hat{\alpha}_2^t\}_{d^t}$.

Expected Maximum Improvement over Confident Regions

- ➡ Special <u>acquisition function</u> using the VQE kernel and the concept of <u>confident regions</u>
- → Use EMICoRe to perform a grid search and find the **best pair of shifts** $\{\hat{\alpha}_1^t, \hat{\alpha}_2^t\}_{d^t}$.

Start from the current best point on **subspace** identified by i

Expected Maximum Improvement over Confident Regions

- → Special <u>acquisition function</u> using the VQE kernel and the concept of <u>confident regions</u>
- → Use EMICoRe to perform a grid search and find the **best pair of shifts** $\{\hat{\alpha}_1^t, \hat{\alpha}_2^t\}_{d^t}$.

Results: 🚺 Shot Noise, 🚺 Hardware Noise

$$\sigma = (0.0, 0.0, -1.0)$$

 $J = (-1, 0.0, 0.0)$

Setting

Noise Type

- Simulated Hardware Noise
- No Error Mitigation

For details on error mitigation see the poster by Luca Wagner

Kim A. Nicoli - University of Bonn

LATTICE 24

Summary and outlook

Summary:

- Proposed a physics-informed <u>VQE-kernel</u> fulfilling VQEs' functional form.
- Proposed novel acquisition function **EMICoRe**.
- EMICoRe combined with the VQE-kernel can \bullet
 - **★ <u>Outperform</u>** baselines on standard benchmarks.
 - **★** Approximate the target function as more points are measured.

Summary and outlook

Summary:

- Proposed a physics-informed <u>VQE-kernel</u> fulfilling VQEs' functional form.
- Proposed novel acquisition function <u>EMICoRe</u>. \bullet
- EMICoRe combined with the VQE-kernel can \bullet
 - **★ <u>Outperform</u>** baselines on standard benchmarks.
 - **★** Approximate the target function as more points are measured.

Outlook:

- Hardware noise and error mitigation \rightarrow see poster by <u>Luca Wagner</u>
- Quantum chemistry benchmark \rightarrow see poster by Luca Wagner
- Learn to optimize measurement shots \rightarrow see <u>Anders C., Nicoli K.A. et al., ICML (2024)</u>
- Application in LQFT (work in progress, i.e., 2+1 QED)

Time for some Advertisement

Registrations are open:

https://indico.hiskp.uni-bonn.de/event/443/page/147-home

Kim A. Nicoli - University of Bonn

UNIVERSITÄT BONN

Thank You!

LAMARR

INSTITUTE FOR ACHINE LEARNING AND ARTIFICIAL

INTELLIGENCE

Kim A. Nicoli - University of Bonn

Link to the paper and code:

https://t.ly/fYWbx https://t.ly/IET-l

Link to the workshop registration:

Back Up Slides

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Data: Collection of observations $D = \{(x_i, y_i)\}_{i=1}^N$

Task: Provide predictive distribution at new test points $\{x'_i\}_{i=1}^M$

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Data: Collection of observations $D = \{(x_i, y_i)\}_{i=1}^N$

Task: Provide predictive distribution at new test points $\{x'_i\}_{i=1}^M$

Assume: Noisy observations of some true function $f^*(x)$, i.e.,

- $y_i = f^*(\boldsymbol{x}_i) + \varepsilon_i$

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Data: Collection of observations $D = \{(x_i, y_i)\}_{i=1}^N$

Task: Provide predictive distribution at new test points

Assume: Noisy observations of some true function f^* (

Variance of observation noise ε_i

$$p(y | \mathbf{x}, f(\cdot)) = \mathcal{N}_1(y; f(\mathbf{x}), \sigma^2)$$

Kim A. Nicoli - University of Bonn

We introduce:

$$\{x_{j}'\}_{j=1}^{M}$$

(x), i.e.,
$$y_i = f^*(x_i) + \varepsilon_i$$

GP regression model with 1-D Gaussian Likelihood

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Data: Collection of observations $D = \{(x_i, y_i)\}_{i=1}^N$

Task: Provide predictive distribution at new test points

Assume: Noisy observations of some true function f^* (.

Variance of observation noise ε_i

$$p(y | \mathbf{x}, f(\cdot)) = \mathcal{N}_1(y; f(\mathbf{x}), \sigma^2)$$
$$p(f(\cdot)) = \operatorname{GP}(f(\cdot); \nu(\cdot), k(\cdot, \cdot))$$

Kim A. Nicoli - University of Bonn

We introduce:

$$\{x_{j}'\}_{j=1}^{M}$$

(x), i.e.,
$$y_i = f^*(x_i) + \varepsilon_i$$

GP regression model with 1-D Gaussian Likelihood

A GP is an infinite-dimensional generalization of multivariate Gaussian distribution.

Data: Collection of observations $D = \{(x_i, y_i)\}_{i=1}^N$

Task: Provide predictive distribution at new test points

Assume: Noisy observations of some true function f^* (.

Variance of observation noise ε_i

$$p(y | \mathbf{x}, f(\cdot)) = \mathcal{N}_1(y; f(\mathbf{x}), \sigma^2)$$
$$p(f(\cdot)) = \operatorname{GP}(f(\cdot); \nu(\cdot), k(\cdot, \cdot))$$

Kim A. Nicoli - University of Bonn

We introduce:

$$\{\boldsymbol{x}_{j}'\}_{j=1}^{M}$$

(x), i.e.,
$$y_i = f^*(x_i) + \varepsilon_i$$

GP regression model with 1-D Gaussian Likelihood

\Rightarrow Prior covariance function or kernel function $k(x, x' | \theta)$

Function measuring the similarity between any two inputs $\{x, x'\}$

- Implicitly determines which functions are likely to be sampled.
- It needs to be carefully designed.
- Technical restrictions apply (symmetry, positive-semidefitness).

\Rightarrow Prior covariance function or kernel function $k(x, x' | \theta)$

- Implicitly determines which functions are likely to be sampled.
- It needs to be carefully designed.
- Technical restrictions apply (symmetry, positive-semidefitness).

→ The GP regressor can be used in the context of Bayesian Optimization (BO)

- *M* set of new candidate points $X' \in \mathcal{X}^M$ are selected.
- The mean and variance of the GP (trained on $D = \{X, y\}, X \in \mathcal{X}^N$) can be computed at X'. • Those information are used to compute (maximize) a general acquisition function

Function measuring the similarity between any two inputs $\{x, x'\}$

 \Rightarrow Prior covariance function or kernel function $k(x, x' | \theta)$

Function measuring the similarity between any two inputs $\{x, x'\}$

- Implicitly determines which functions are likely to be sampled.
- It needs to be carefully designed.
- Technical restrictions apply (symmetry, positive-semidefitness).
- → The GP regressor can be used in the context of Bayesian Optimization (BO)
- *M* set of new candidate points $X' \in \mathcal{X}^M$ are selected.
- The mean and variance of the GP (trained on $D = \{X, y\}, X \in \mathcal{X}^N$) can be computed at X'. • Those information are used to compute (maximize) a general **acquisition function**

$$\max_{X'} a_{X^{t-1}}(X')$$

 \Rightarrow Prior covariance function or kernel function $k(x, x' | \theta)$

- Implicitly determines which functions are likely to be sampled.
- It needs to be carefully designed.
- Technical restrictions apply (symmetry, positive-semidefitness).
- → The GP regressor can be used in the context of Bayesian Optimization (BO)
- *M* set of new candidate points $X' \in \mathcal{X}^M$ are selected. • The mean and variance of the GP (trained on $D = \{X, y\}, X \in \mathcal{X}^N$) can be computed at X'.
- Those information are used to compute (maximize) a general acquisition function

$$\max_{X'} a_{X^{t-1}}(X') \longrightarrow Where$$

Kim A. Nicoli - University of Bonn

- **Function measuring the similarity between any two inputs** $\{x, x'\}$

e should I measure next s.t. the information gain is maximized?

We tackle the <u>classical optimization problem</u> from a <u>Bayesian Optimization</u> standpoint.

We tackle the <u>classical optimization problem</u> from a <u>Bayesian Optimization</u> standpoint.

Approximate the true energy

Using noisy observations from the QC

Kim A. Nicoli - University of Bonn

 $E^*(\cdot): \mathcal{X} \mapsto \mathbb{R}$ $y = E^*(\mathbf{x}) + \varepsilon$ $\mathcal{E} \sim QC$ noise

We tackle the <u>classical optimization problem</u> from a <u>Bayesian Optimization</u> standpoint.

Approximate the true energy

Using noisy observations from the QC

We train a GP surrogate model

$$\begin{split} E^*(\cdot) &: \mathcal{X} \mapsto \mathbb{R} \\ y &= E^*(\mathbf{x}) + \varepsilon \qquad \varepsilon \sim \text{QC noise} \\ p(f(\cdot)|\mathbf{X}, \mathbf{y}) &= \operatorname{GP}(f(\cdot); \mu_{\mathbf{X}}(\cdot), s_{\mathbf{X}}(\cdot, \cdot)) \end{split}$$

We tackle the <u>classical optimization problem</u> from a <u>Bayesian Optimization</u> standpoint.

 E^*

Approximate the true energy

Using noisy observations from the QC

We train a GP surrogate model

One question remains to be answered:

At which point in parameter space we should perform the *next measurement*, on the quantum computer, to maximize the information gain and minimize the quantum computer calls needed to minimize the objective?

$$(\cdot):\mathcal{X}\mapsto\mathbb{R}$$

$$y = E^*(\mathbf{x}) + \varepsilon$$
 $\varepsilon \sim QC$ noise

$$p(f(\cdot)|\mathbf{X},\mathbf{y}) = \operatorname{GP}(f(\cdot);\mu_{\mathbf{X}}(\cdot),s_{\mathbf{X}}(\cdot,\cdot))$$

The VQE Kernel

Computing derivatives on the quantum computer is challenging.

They can be computed using the so-called parameter shift rule (PSR) <u>Schuld et al., (2019)</u>

$$2\frac{\partial}{\partial x_d} f^*(\mathbf{x}) = f^*\left(\mathbf{x} + \frac{\pi}{2}\mathbf{e}_d\right) - f^*\left(\mathbf{x} - \frac{\pi}{2}\mathbf{e}_d\right)$$

The VQE Kernel

Computing derivatives on the quantum computer is challenging.

They can be computed using the so-called **parameter shift rule (PSR)** <u>Schuld et al., (2019)</u>

$$2\frac{\partial}{\partial x_d} f^*(\mathbf{x}) = f^*\left(\mathbf{x} + \frac{\pi}{2}\mathbf{e}_d\right) - f^*\left(\mathbf{x} - \frac{\pi}{2}\mathbf{e}_d\right)$$

Starting from this <u>Nakanishi et al., (2020)</u> show that the VQE objective $f^*(\cdot)$ obeys $\exists \mathbf{b} \in \mathbb{R}^{3^D}$ s.t. $f^*(\mathbf{x}) = \mathbf{b}$

$$^{\top} \cdot \mathbf{vec} \left(\otimes_{d=1}^{D} (1, \cos x_d, \sin x_d)^{\top} \right)$$

The VQE Kernel

Computing derivatives on the quantum computer is challenging.

They can be computed using the so-called **parameter shift rule (PSR)** <u>Schuld et al., (2019)</u>

$$2\frac{\partial}{\partial x_d} f^*(\mathbf{x}) = f^*\left(\mathbf{x} + \frac{\pi}{2}\mathbf{e}_d\right) - f^*\left(\mathbf{x} - \frac{\pi}{2}\mathbf{e}_d\right)$$

Starting from this <u>Nakanishi et al., (2020)</u> show that the VQE objective $f^*(\cdot)$ obeys

$$\exists \mathbf{b} \in \mathbb{R}^{3^{D}} \quad \text{s.t.} \quad f^{*}(\mathbf{x}) = \mathbf{b}^{\top} \cdot \mathbf{vec} \left(\bigotimes_{d=1}^{D} (1, \cos x_{d}, \sin x_{d})^{\top} \right)$$

We thus derive a covariance function $k(\cdot, \cdot)$ fulfilling the same functional

$$k^{\text{VQE}}(\mathbf{x}, \mathbf{x}') = \sigma_0^2 \prod_{d=1}^D \left(\frac{\gamma^2 + 2\cos(x_d - x'_d)}{\gamma^2 + 2} \right)$$

See <u>Nicoli et al., (2023)</u> for detailed proofs.

Kim A. Nicoli - University of Bonn

Confident **Re**gions

Kim A. Nicoli - University of Bonn

For each set of candidate pairs $X' \in \mathcal{X}^M$, i.e., M = 2, we compute

$$a_{\boldsymbol{X}}(\boldsymbol{X}') = \frac{1}{M} \langle \max(0, \min_{\boldsymbol{x} \in \mathcal{Z}_{\boldsymbol{X}}} f(\boldsymbol{x}) - \min_{\boldsymbol{x} \in \mathcal{Z}_{(\boldsymbol{X}, \boldsymbol{X}')}} f(\boldsymbol{x})) \rangle_{p(f(\cdot)|\boldsymbol{X})}$$

Kim A. Nicoli - University of Bonn

For each set of candidate pairs $X' \in \mathcal{X}^M$, i.e., M = 2, we compute

$$a_{\boldsymbol{X}}(\boldsymbol{X}') = \frac{1}{M} \langle \max(0, \min_{\boldsymbol{x} \in \mathcal{Z}_{\boldsymbol{X}}} f(\boldsymbol{x}) - \min_{\boldsymbol{x} \in \mathcal{Z}_{(\boldsymbol{X}, \boldsymbol{X}')}} f(\boldsymbol{x})) \rangle_{p(f(\cdot)|\boldsymbol{X}|)}$$

The **best candidate pair** \tilde{X} to measure at next step is

$$\tilde{X} = \operatorname{argmax}_{X' \in \mathcal{X}^M} a_{X^{t-1}}(X')$$

Kim A. Nicoli - University of Bonn

For each set of candidate pairs $X' \in \mathcal{X}^M$, i.e., M = 2, we compute

$$a_{\boldsymbol{X}}(\boldsymbol{X}') = \frac{1}{M} \langle \max(0, \min_{\boldsymbol{x} \in \mathcal{Z}_{\boldsymbol{X}}} f(\boldsymbol{x}) - \min_{\boldsymbol{x} \in \mathcal{Z}_{(\boldsymbol{X}, \boldsymbol{X}')}} f(\boldsymbol{x})) \rangle_{p(f(\cdot)|\boldsymbol{X}|)}$$

The **best candidate pair** \tilde{X} to measure at next step is

$$\tilde{X} = \operatorname{argmax}_{X' \in \mathcal{X}^M} a_{X^{t-1}}(X')$$

Kim A. Nicoli - University of Bonn

Backup: GP Visualization

Kim A. Nicoli - University of Bonn

GP

Backup: 3 qubits (Critical Ising)

Backup: 5 qubits (Critical Ising)

Backup: 7 qubits (Critical Ising)

Backup: 3 qubits (Heisenberg)

Backup: 5 qubits (Heisenberg)

Kim A. Nicoli - University of Bonn

Backup: 7 qubits (Heisenberg)

Backup: Convergence for Longer Runs

Backup: Ablation Study (5 qubits)

Kim A. Nicoli - University of Bonn

Backup: Gaussian Processes Regression

Radial Basis Function kernel

Kim A. Nicoli - University of Bonn

- Sampled function #1 Sampled function #2
 - Sampled function #3
 - Sampled function #4
 - Sampled function #5
 - Mean
 - \pm 1 std. dev.
 - Observations

Backup: Gaussian Processes Regression

Radial Basis Function kernel

Kim A. Nicoli - University of Bonn

- Sampled function #1
- Sampled function #2
- Sampled function #3
- Sampled function #4
- Sampled function #5 Mean
- \pm 1 std. dev.
- Observations

Backup: Gaussian Processes Regression

Radial Basis Function kernel

Kim A. Nicoli - University of Bonn

- Sampled function #1
- Sampled function #2
- Sampled function #3
- Sampled function #4
- Sampled function #5
- Mean
- \pm 1 std. dev.
- Observations

LATTICE 24

Backup: Gaussian Processes Regression

Radial Basis Function kernel

Kim A. Nicoli - University of Bonn

- --- Sampled function #1
- --- Sampled function #2--- Sampled function #3
- Complete function #3
- Sampled function #4Sampled function #5
- ---- Mean
- ± 1 std. dev.
- Observations

Backup: Gaussian Processes Regression

Radial Basis Function kernel

Kim A. Nicoli - University of Bonn

- Sampled function #1
- Sampled function #2
- Sampled function #3
- Sampled function #4
- Sampled function #5
- Mean
- \pm 1 std. dev.
- Observations

LATTICE 24

