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Machine Learning based Unfolding |

» Unfolding : Inversion problem aimed at getting genuine physics data from

measured smeared data
1. Identify P~ for given (x,y,)

observed true . 2. Apply P! X, to get Y,

» Used extensively in particle physics experiments to de-correlate detector
defects from measurements

> Both ML and non-ML (IBU, TUnfold, SVD ...) algorithms exist for data
unfolding

» Main advantage of ML based unfolding : no binning of data required!

SciPost Physics Submission

The Landscape of Unfolding with Machine Learning

check out for a

| ——
recent overview

Nathan Huetsch!, Javier Marifio Villadamigo!, Alexander Shmakov?, Sascha Diefenbacher?,
Vinicius Mikuni®, Theo Heimel!, Michael Fenton?, Kevin Greif?, 3
Benjamin Nachman®*, Daniel Whiteson?, Anja Butter!*, and Tilman Plehn'-®




Machine Learning based Unfolding I

l. Re-weighting approach

PHYSICAL REVIEW LETTERS 124, 182001 (2020)

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen ,1’2’3’* Patrick T. Komiske ,4’T Eric M. Metodiev ,4’i Benjamin Nachman ,2’§ and Jesse Thalere*!| i

simulated phys. data w/o

[ Pgen j D [punfold(xj

FI. Pull weights U.L

[psim ] — [pdata(y)j

simulated data w measured data w
detector defects detector defects

> The final goal :

(n) —
unfold(x) Wh @ p ge”(x)

Il. Generative approach

> Two popular methods -
Schrodinger bridges and Direct
Diffusion

Improving Generative Model-based Unfolding with Schrodinger Bridges

C
¥ |Sascha Diefenbacher,!* Guan-Horng Liu,> T Vinicius Mikuni,® # Benjamin Nachman,’* $ and Weili Nie® ¥

Kicking it Off(-shell) with Direct Diffusion

Anja Butter™?, Tom4s Jezo02, Michael Klasen?,
Mathias Kuschick?, Sofia Palacios Schweitzer!, and Tilman Plehn!

> Both of these methods aim to
morph one non-trivial distribution

pgen to another Psim via SDE and
ODE respectively

> Apply the map to p,..(y) to get
punfold(x)




| attice observables via trace estimation

> Observables in lattice QCD calculations can often be expressed as derivatives

dIndet M, aMf
of In Z, e.g. quark number density : =Tr| M;!—

s "oy

> Typical size of Fermion matrices : Ng XN_XN,.X4,can go up to
~ 0(107 — 10°)

> Estimating the trace of the inverse of such large matrices is only accessible

through “random noise method” that requires drawing random vectors 7" (i

component of the n’* vector) which satisfy

() = Tim — Zm and () = lim — Zm n" =,



Noisy trace estimation with few sources

> The goal is to draw L < < N (linear dimension of M) vectors to estimate

(n'Mn), ~TrM + O (

/\

<}7Mz l?’h) ~ i,i <;71 l]r]J>l7é] ~ 0

J(M) | only get the true
\/Z trace in L = oo !

> Why is it important to try and use less random vectors?

> On the lattice - we have extra steps to reach the observable !

, OM

» Need to estimate traces of M~', M~ aﬂ

» First we need to solve Mx = ;71 , as many times, using CG, as the sources

to get x and construct the estimator (7x)



Can Machine Learning help ¢

> The idea to reduce the number noise vectors to estimate the trace using
machine learnt probe vectors is not new

around for a while (2016) and

not implemented in any real | =—
lattice calculation yet

and the talk on Monday by B.
Choi @ 11.15

Estimation of matrix trace using machine learning

Boram Yoon

Los Alamos National Laboratory, CCS-7, Los Alamos, New Mexico 87545

Abstract

We present a new trace estimator of the matrix whose explicit form is not given but its matrix
multiplication to a vector is available. The form of the estimator is similar to the Hutchison stochastic
trace estimator, but instead of the random noise vectors in Hutchison estimator, we use small number
of probing vectors determined by machine learning. Evaluation of the quality of estimates and bias
correction are discussed. An unbiased estimator is proposed for the calculation of the expectation value
of a function of traces. In the numerical experiments with random matrices, it is shown that the precision
of trace estimates with O(10) probing vectors determined by the machine learning is similar to that with
O(10000) random noise vectors.

> The idea of this project was to look at the distributions of traces with
varying number of sources - in the hope of training a NN to unlearn the
effect of small number of random vectors

(n"Mny, =f; 1 ®n'Mn),  when L;<L,




Distribution of random vectors & correlations

> Observation | : Distributions change with L non-trivially and depend on
the random sources rather than matrix structure

L
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20
distribution of 0.00151 -~ 50
random vectors as =
applied to a 1000 by | === ‘%
1000 matrix of all 8 0.0010 -
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D i.i\Mioi )L
0.0000 -
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Distribution of random vectors & correlations
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Distribution of random vectors & correlations

» Observation Il : Distributions differ for different L - not an artefact of
low statistics !

0.0008 Statistics Statistics
EEE 1000 0.0010 1 B 1000
0.0007 -
2500 e 2500
0.0006 - 5000 0.0008 - 5000
0.0005 1 L =10
0.0006 -
0.00041 > i1 (nini) =5
0.0003 - 0.0004 - EE:¢:1<7k7h>lk=1o
0.0002 -
0.0002 -
0.0001 -
0.0000 - 0.0000 -

0 2000 4000 6000 0 1000 2000 3000

» As L increases, skewness decreases and binder cumulant increases 10



Results for mock matrices |

> A simple fully connected, network with 3 hidden layers

Output

. h2, 60 P

Input Layer : / / Layer : Target

100 L1 obs \l 100 L2 obs
Activation : softplus

h1, 80 h3, 80 Optimizer : Adam

> Training : Iteratively update the network parameters to minimize the
difference || ALT - L2 || to learn A 35

30
M, : A dense 1K by 1K A§25_ l I
matrix with elements — = 1
<
drawn from a gaussian 20-
157 Te(M;) ¢ NN Model @L = 10
¥ Training data M
10! | | T



Results for mock matrices |l

> The same model applied to other matrices or different structures and sizes

M; : A sparse 1000 by

100 +

1000 matrix with elements |

drawn from a poisson
distribution

Gain factor ~ 6.6

— Tr(My) ¢ NN Model QL = 10
B Test data ¢  direct computation @ L

10!

102

(' Msn)y,

40 A

<€« \matrix with elements drawn

30 1

60 -

— Tr(Ms) ¢ NN Model @L=10
B  Test data %  comparison to L=40
Mo v
Gain factor ~ 5.2
101 102

M, : A sparse 10K by 10K

from a gaussian

12



Lattice data : What happens here?

> To apply this to lattice we need data in the form of various independent sets of
measurements for different number of random sources

> Using data from our (Bielefeld - Parma collaboration ) recent imaginary u
simulations [arXiv:2405.10196] Complex y — complex traces !

> Can we spilt the analysis into real and imaginary parts of observables - since
Trace and E are linear operation?
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https://arxiv.org/abs/2405.10196

Lattice data : What happens here?

> Although distributions not like mock data - low statistics and/or no fixed matrix?

» What does the model learn?

6000 - Test Data Test Data
B [ = 100 Target B [ = 100 Target
5000 | BN NN @ L=10, Test i NN @ L=10, Test
BN L=10 Test

4000 -

3000 -

Density

2000 -

1000 -

\0—0-_.*._

0- T ' . ,
0.2365 0.2370 0.2375 0.2380 0.2385  0.2390 0.2372 0.2374 0.2376 0.2378 0.2380
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Summary

> Invitation to consider the well-developed Unfolding algorithms developed by the
experimental community to lattice problems like inversion

> Motivate the problem of trace estimation as a “detector defect” problem that can
be unfolded

» Some success on mock matrix data

> Lattice : There is no fixed matrix - as each gauge configuration has statistical
fluctuations. This adds a dimension of complexity not present in the mock data

> Can one think of other ways to improve the Hutchinson trace estimator?

A BOUND FOR THE ERROR IN THE Bernoulli Society for Mathematical Statistics and Probability
NORMAL APPROXIMATION TO THE

DISTRIBUTION OF A SUM OF On Stein's method for products of normal random variables and zero bias couplings
DEPENDENT RANDOM VARIABLES Author(s): ROBERT E. GAUNT

CHARLES STEIN
STaANFORD UNIVERSITY

> Data from other projects very welcome :



