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Machine Learning based Unfolding I

‣  Unfolding : Inversion problem aimed at getting genuine physics data from 
measured smeared data 

                                  

‣  Used extensively in particle physics experiments to de-correlate detector 
defects from measurements 

‣  Both ML and non-ML (IBU, TUnfold, SVD …) algorithms exist for data 
unfolding 

‣  Main advantage of ML based unfolding : no binning of data required! 

Xobserved = P ⊛ Ytrue
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Abstract

Recent innovations from machine learning allow for data unfolding, without binning
and including correlations across many dimensions. We describe a set of known, up-
graded, and new methods for ML-based unfolding. The performance of these approaches
are evaluated on the same two datasets. We find that all techniques are capable of ac-
curately reproducing the particle-level spectra across complex observables. Given that
these approaches are conceptually diverse, they offer an exciting toolkit for a new class
of measurements that can probe the Standard Model with an unprecedented level of
detail and may enable sensitivity to new phenomena.
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check out for a 
recent overview

1. Identify  for given P−1 (xi, yi)

2. Apply   to get  P−1 Xi Yi
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Machine Learning based Unfolding II

I. Re-weighting approach II. Generative approach

 

OmniFold: A Method to Simultaneously Unfold All Observables
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1Department of Physics, University of California, Berkeley, California 94720, USA

2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Google, Mountain View, California 94043, USA

4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 2 December 2019; accepted 3 April 2020; published 7 May 2020)

Collider data must be corrected for detector effects (“unfolded”) to be compared with many theoretical
calculations and measurements from other experiments. Unfolding is traditionally done for individual,
binned observables without including all information relevant for characterizing the detector response.
We introduce OMNIFOLD, an unfolding method that iteratively reweights a simulated dataset, using
machine learning to capitalize on all available information. Our approach is unbinned, works for arbitrarily
high-dimensional data, and naturally incorporates information from the full phase space. We illustrate this
technique on a realistic jet substructure example from the Large Hadron Collider and compare it to standard
binned unfolding methods. This new paradigm enables the simultaneous measurement of all observables,
including those not yet invented at the time of the analysis.

DOI: 10.1103/PhysRevLett.124.182001

Measuring properties of particle collisions is a central
goal of particle physics experiments, such as those at the
Large Hadron Collider (LHC). After correcting for detector
effects, distributions of collider observables at “truth level”
can be compared with semi-inclusive theoretical predic-
tions as well as with measurements from other experiments.
These comparisons are widely used to enhance our under-
standing of the Standard Model, tune parameters of
Monte Carlo event generators, and enable precision
searches for new physics. “Unfolding” is the process of
obtaining these truth distributions (particle-level) from
measured information recorded by a detector (detector-
level). The unfolding process ensures that measurements
are independent of the specific experimental context,
allowing for comparisons across different experiments
and usage with the latest theoretical tools [1], even long
after the original analysis is completed. Many unfolding
methods have been proposed and are currently used by
experiments. See Refs. [2–5] for reviews and Refs. [6–8]
for the most widely used unfolding algorithms.
Current unfolding methods face three key challenges.

First, all of the widely used methods require the measured
observables to be binned into histograms. This binning
must be determined ahead of time and is often chosen
manually. Second, because the measurements are binned,

one can only unfold a small number of observables
simultaneously. Multidifferential cross section measure-
ments beyond two or three dimensions are simply not
feasible. Finally, unfolding corrections for detector effects
often do not take into account all possible auxiliary features
that control the detector response. Even though the inputs
to the unfolding can be calibrated, if the detector response
depends on features that are not used directly in the
unfolding, then the results will be suboptimal and poten-
tially biased.
This Letter introduces OMNIFOLD, a new approach that

solves all three of these unfolding challenges. Detector-
level quantities are iteratively unfolded, using machine
learning to handle phase space of any dimensionality
without requiring binning. Utilizing the full phase space
information mitigates the problem of auxiliary features
controlling the detector response. There have been previous
proposals to use machine learning methods for unfolding
[9–11] as well as proposals to perform unfolding without
binning [10–13]. These proposals, however, are untenable
in high dimensions and do not reduce to standard methods
in the binned case. OMNIFOLD naturally processes high-
dimensional features, in the spirit of previous machine-
learning-based reweighting strategies [14–19], and it
reduces to well-established methods [6] in the binned case.
We also introduce simpler versions of the procedure, using
single or multiple observables, named UNIFOLD and
MULTIFOLD, respectively.
All unfolding methods require a trustable detector sim-

ulation to estimate the detector response. In the binned
formulation, the folding equation can be written asm ¼ Rt,
where m and t are vectors of the measured detector-level
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Machine learning-based unfolding has enabled unbinned and high-dimensional di↵erential cross
section measurements. Two main approaches have emerged in this research area: one based on
discriminative models and one based on generative models. The main advantage of discriminative
models is that they learn a small correction to a starting simulation while generative models scale
better to regions of phase space with little data. We propose to use Schrödinger Bridges and
di↵usion models to create SBUnfold, an unfolding approach that combines the strengths of both
discriminative and generative models. The key feature of SBUnfold is that its generative model
maps one set of events into another without having to go through a known probability density as
is the case for normalizing flows and standard di↵usion models. We show that SBUnfold achieves
excellent performance compared to state of the art methods on a synthetic Z+jets dataset.

I. INTRODUCTION

Correcting detector e↵ects – called deconvolution or
unfolding – is the central statistical task in di↵erential
cross section measurements in particle, nuclear, and as-
trophysics. Classical unfolding methods are based on
histograms, which result in binned measurements in a
small number of dimensions. Machine learning has the
potential to revolutionize di↵erential cross section mea-
surements by enabling unbinned and high-dimensional
measurements. A number of machine learning-based un-
folding techniques have been proposed [1–15] (see also
Ref. [16] for an overview) and the OmniFold method [5, 9]
has recently been applied to studies of hadronic final
states with data from H1 [17–20], LHCb [21], CMS [22],
and STAR [23].

Let X represent1 an event at detector-level and Z rep-
resent the same event at particle-level. The goal of un-
folding is to infer the most likely density p(z) using sim-
ulated pairs (Z,X) and observations x from data. In
classical approaches, X and Z are discretized and un-
folding proceeds via regularized matrix inversion to ap-
proximate the maximum likelihood solution. The likeli-
hood is a product of Poisson probability mass functions,
although most measurements do not directly maximize
this likelihood. For example, one of the most common
classical unfolding algorithms is called Lucy-Richardson
deconvolution [24, 25] (also known as Iterative Bayesian
Unfolding [26]) which uses an Expectation-Maximization

⇤
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1
Upper case letters denote random variables and lower case letters

correspond to realizations of those random variables.

(EM) algorithm to converge to a maximum likelihood es-
timator.
In the unbinned case, the likelihood is not known. One

solution is to use the EM algorithm, which is at the core
of two maximum likelihood machine learning approaches.
The first is OmniFold, which proceeds as follows2:

E step: !i+1(x) = pdata(x)/p̃sim.(x)

p̃sim.(x) ⌘
R
dz psim.(x, z) ⌫i(z)

M step: ⌫i+1(z) = p̄sim.(z)/psim.(z)

p̄sim.(z) ⌘
R
dx psim.(x, z)!i+1(x)

Both the Expectation (E) and Maximization (M) steps
are achieved in practice by training classifiers and inter-
preting the resulting score as the target likelihood ratio,
e.g. take samples from pdata and from p̃sim. (samples
from psim. weighted by ⌫) and train a classifier to distin-
guish them for the E step. The final result is the set of
simulated events weighted by ⌫ with probability density
psim.(z) ⌫(z) in the continuum limit. An alternative ap-
proach called IcINN [11] is instead based on generative
models:

E step: pi(z|x) / psim.(x|z) ⌫i(z)

M step: ⌫i+1(z) = p̌sim.(z)/psim.(z)

p̌sim.(z) ⌘
R
dx pi(z|x) pdata(x)

The E step of the IcINN is achieved by training a
generative model (a normalizing flow [27]) to emulate
psim.(x|z) ⌫i(z) while the M step uses a classifier as in

2
This integral format is a continuum limit representation. In prac-

tice, the integrals are replaces with sums over examples.
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Kicking it Off(-shell) with Direct Diffusion
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Abstract

Off-shell effects in large LHC backgrounds are crucial for precision predictions and, at the
same time, challenging to simulate. We show how a generative diffusion network learns
processes with off-shell kinematics given the much simpler on-shell ones. It generates
off-shell configurations fast and precisely, while reproducing even challenging on-shell
features.
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‣ Two popular methods - 
Schrödinger bridges and Direct 
Diffusion

p(n)
unfold(x) = wn ⊛ pgen(x)

wi

‣ The final goal : 

Pull weights

measured data w 
detector defects

simulated data w 
detector defects

simulated phys. data w/o

‣ Both of these methods aim to 
morph one non-trivial distribution 

 to another  via SDE and 
ODE respectively  

‣ Apply the map to  to get 

pgen psim

pdata(y)
punfold(x)



Lattice observables via trace estimation
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‣  Observables in lattice QCD calculations can often be expressed as derivatives 

of ln , e.g. quark number density :            

‣ Typical size of Fermion matrices :    , can go up to 
 

‣ Estimating the trace of the inverse of such large matrices is only accessible 
through “random noise method” that requires drawing random vectors   (  
component of the  vector) which satisfy 

             and       

Z
∂ ln det Mf

∂μf
= Tr (M−1

f

∂Mf

∂μf )
N3

σ × Nτ × Nc × 4
∼ O(107 − 109)

ηn
i ith

nth

⟨ηi⟩ = lim
L→∞

1
L

L

∑
m=1

ηm
i = 0 ⟨ηiηj⟩ = lim

L→∞

1
L

L

∑
m=1

ηm
i ηm

j = δi j



Noisy trace estimation with few sources

6

‣ The goal is to draw   (linear dimension of M) vectors to estimate L < < N

⟨ηT Mη⟩L ≃ TrM + 𝒪 ( f(M)

L )
⟨ηiMi,iηi⟩ ⟨ηiMi,jηj⟩i≠j

!  only get the true 
trace in  !L → ∞

~ 0~ Mi,i

‣ Why is it important to try and use less random vectors? 

‣  On the lattice - we have extra steps to reach the observable !  

‣ Need to estimate traces of                          …. 

‣  First we need to solve  , as many times, using CG, as the sources 
to get  and construct the estimator 

Mx = ηl

x ⟨ηx⟩

M−1 , M−1 ∂M
∂μ



Can Machine Learning help ?

Estimation of matrix trace using machine learning

Boram Yoon

Los Alamos National Laboratory, CCS-7, Los Alamos, New Mexico 87545

Abstract

We present a new trace estimator of the matrix whose explicit form is not given but its matrix

multiplication to a vector is available. The form of the estimator is similar to the Hutchison stochastic

trace estimator, but instead of the random noise vectors in Hutchison estimator, we use small number

of probing vectors determined by machine learning. Evaluation of the quality of estimates and bias

correction are discussed. An unbiased estimator is proposed for the calculation of the expectation value

of a function of traces. In the numerical experiments with random matrices, it is shown that the precision

of trace estimates with O(10) probing vectors determined by the machine learning is similar to that with

O(10000) random noise vectors.

1 Introduction

Many applications require the trace calculation of the matrix whose explicit form is not given but only its
matrix multiplication to an arbitrary vector is available. An example is the trace calculation of the inverse
of Dirac matrix in lattice quantum chromodynamics (QCD) [1]. The Dirac matrix is large and sparse so
that explicit matrix inversion is not feasible, but the matrix multiplication of the inverse matrix to a vector
is available through iterative linear equation solvers, such as the Conjugate Gradient (CG) algorithm [2]. In
general, an exact solution can be obtained by N matrix-vector multiplications for a N⇥N matrix. However,
such an exact estimation is computationally expensive for large matrices, so stochastic approaches, such as
the Hutchison estimator[3], are widely used. For specific structures of matrices, such as the banded matrices,
improved trace estimators can be defined by exploiting the matrix structure, so that precise trace estimates
are obtained by small number of matrix-vector multiplications [4, 5, 6]. In general, however, the matrix
structure is too complicated to be exploited by human knowledge, while it can be explored by using machine
learning.

Machine learning is a field of science that makes a computer to act based on the learning from data. In
contrast to the specific models with small number of free parameters in conventional data analysis, machine
learning uses general models with large number of free parameters, such as the artificial neural network
(ANN) [7, 8] or the support vector machines (SVMs) [9]. Based on the generality of the learning model and
large number of free parameters, computer builds its own model from data.

In this paper, the idea of machine learning is applied to the trace estimation. We build a trace estimator
with high degrees of freedom, and train the estimator by using large number of matrices that have similar
structures. As other machine learning applications, the learning procedure is computationally expensive, but
the trace estimation using the trained estimator requires only small number of matrix-vector multiplications.
In section 2, we define the new trace estimator and learning procedure, and discuss the quality of the
estimates and bias correction. Numerical experiments of the new trace estimator are shown in Section 3,
and we conclude in Section 4.
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‣ The idea to reduce the number noise vectors to estimate the trace using 
machine learnt probe vectors is not new

around for a while (2016) and 
not implemented in any real 
lattice calculation yet 

‣  The idea of this project was to look at the distributions of traces with 
varying number of sources - in the hope of training a NN to unlearn the 
effect of small number of random vectors

⟨ηTMη⟩L1
= fL1,L2

⊛ ⟨ηTMη⟩L2 when L1 < L2

and the talk on Monday by B. 
Choi @ 11.15 
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Distribution of random vectors & correlations
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distribution of 
random vectors as 
applied to a 1000 by 
1000 matrix of all 
ones
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‣  Observation I : Distributions change with L non-trivially and depend on 
the random sources rather than matrix structure



Distribution of random vectors & correlations
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Distribution of random vectors & correlations

0 2000 4000 6000
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

P
i=1h¥i¥iiL=5

Statistics

1000

2500

5000

0 1000 2000 3000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

P
i=1h¥i¥iiL=10

Statistics

1000

2500

5000

‣  Observation II : Distributions differ for different L - not an artefact of  
low statistics !

L = 5 L = 10

‣  As L increases, skewness decreases and binder cumulant increases 10



Results for mock matrices I
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‣  A simple fully connected, network with 3 hidden layers 

‣  Training : Iteratively update the network parameters to minimize the 
difference || A L1 - L2 || to learn A 
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Training data

NN Model @L = 10

 : A dense 1K by 1K 
matrix with elements 
drawn from a gaussian

M1



Results for mock matrices II
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 : A sparse 1000 by 
1000 matrix with elements 
drawn from a poisson 
distribution

M3

 : A sparse 10K by 10K 
matrix with elements drawn 
from a gaussian

M4
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‣  The same model applied to other matrices or different structures and sizes 

Gain factor ~ 6.6

Gain factor ~ 5.2



Lattice data : What happens here?
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‣  To apply this to lattice we need data in the form of various independent sets of 
measurements for different number of random sources 

‣  Using data from our (Bielefeld - Parma collaboration ) recent imaginary  
simulations [arXiv:2405.10196] Complex complex traces !  

‣ Can we spilt the analysis into real and imaginary parts of observables - since 
Trace and  are linear operation?

μ
μ →

𝔼

https://arxiv.org/abs/2405.10196


Lattice data : What happens here?

‣  Although distributions not like mock data - low statistics and/or no fixed matrix? 

‣ What does the model learn?

14
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A BOUND FOR THE ERROR IN THE
NORMAL APPROXIMATION TO THE

DISTRIBUTION OF A SUM OF
DEPENDENT RANDOM VARIABLES

CHARLES STEIN
STANFORD UNIVERSITY

1. Introduction

This paper has two aims, one fairly concrete and the other more abstract. In
Section 3, bounds are obtained under certain conditions for the departure of
the distribution of the sum of n terms of a stationary random sequence from a
normal distribution. These bounds are derived from a more abstract normal
approximation theorem proved in Section 2. I regret that, in order to complete
this paper in time for publication, I have been forced to submit it with many
defects remaining. In particular the proof of the concrete results of Section 3 is
somewhat incomplete.
A well known theorem of A. Berry [1] and C-G. Esseen [2] asserts that if

X1, X2, . is a sequence of independent identically distributed random variables
with EXi = 0, EXV = 1, and ,B = EIXij3 < oo. then the cumulative distribution
function of (1//;n) Yi=l Xi differs from the unit normal distribution by at most
Kf3/ n where K is a constant, which can be taken to be 2. It seems likely, but
has never been proved and will not be proved here, that a similar result holds
for stationary sequences in which the dependence falls off sufficiently rapidly
and the variance of(1//;n) X1.1 Xi approaches a positive constant. I. Ibragimov
and Yu. Linnik ([3], pp. 423-432) prove that, under these conditions, the limiting
distribution of (1/ /n) E Xi is normal with mean 0 and a certain variance G2
Perhaps the best published results on bounds for the error are those of Phillip
[5]. who shows that if in addition the Xi are bounded, with exponentially de-
creasing dependence, then the discrepancy is roughly of the order of n-114
In Corollary 3.2 of the present paper it is proved that under these conditions the
discrepancy is of the order of n - 1/2(log n)2. Actually the assumption of bounded-
ness is weakened to the finiteness of eighth moments. In Corollary 3.1 it is proved
that if the assumption of exponential decrease of dependence is strengthened
tormdependence, the error in the normal approximation is of the order of n- 1/2
The abstract normal approximation theorem of Section 2 is elementary in the

sense that it uses only the basic properties of conditional expectation and the
elements of analysis, including the solution of a first order linear differential
equation. It is also direct, in the sense that the expectation of a fairly arbitrary

583

‣  Invitation to consider the well-developed Unfolding algorithms developed by the 
experimental community to lattice problems like inversion  

‣  Motivate the problem of trace estimation as a “detector defect” problem that can 
be unfolded 

‣  Some success on mock matrix data 

‣ Lattice : There is no fixed matrix - as each gauge configuration has statistical 
fluctuations. This adds a dimension of complexity not present in the mock data 

‣ Can one think of other ways to improve the Hutchinson trace estimator?
Bernoulli Society for Mathematical Statistics and Probability
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