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Decomposition algorithms

▶ Hamiltonian H(U, P ) = T (P ) + V(U)

▶ equations of motion(
U̇

Ṗ

)
=

(
0

V̂P

)
+

(
T̂ U
0

)
, T̂ = piei, V̂ = −ei(V)

∂

∂pi

▶ exact flows of subsystems

▶ ehV̂(U0, P0) = (U0, P0 − hei(V)T i) (momentum update)
▶ ehT̂ (U0, P0) = (exp(−P0h)U0, P0) (link update)

are reversible and symplectic maps.

▶ promising approaches: splitting methods [McLachlan and Quispel 2002] and
force-gradient integrators [Omelyan, Mryglod, and Folk 2003]
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Approximation of force-gradient updates [Schäfers et al. 2024]

▶ force-gradient update: P0 − bkhei(V)T i + 2ckh
3ej(V)ejei(V)T i

▶ idea dates back to [Wisdom, Holman, and Touma 1996]

▶ generalization to Lie groups [Yin and Mawhinney 2012]

Lie series expansion (Fi := −ei(V)):

P0 − bkhei (V)
(
exp

(
2ckh

2

bk
F j(Q0)Tj

)
Q0

)
T i

=P0 − bkhei(V)T i + 2ckh
3ej(V)ejei(V)T i

− 2c2kh
5

bk
ei(V)ej(V)eiejek(V) +

4c3kh
7

3b2k
ei(V)ej(V)eℓ(V)eiejeℓek(V) +O(h9)

no force-gradient term required at the price of a second force evaluation
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Hessian-free force-gradient integrators [Schäfers et al. 2024]

ebkhD̂(bk,ck,h)(U0, P0) :=

(
U0, P0 − hei(V)

(
exp

(
−2ckh

2

bk
ej(V)(Q0)Tj

)
Q0

)
T i

)

Hessian-free force-gradient integrator

Φh = ebshD̂(bs,cs,h)eashT̂ ebs−1hD̂(bs−1,cs−1,h)eas−1hT̂ · · · eb1hD̂(b1,c1,h)ea1hT̂

Approximation neither affects the time-reversibility nor the volume-
preservation of the integrator, but it introduces additional error terms
and the momentum updates are no longer symplectic!
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On energy conservation of Hessian-free force-gradient integrators

▶ Hessian-free variants no longer preserve a shadow Hamiltonian

▶ In general: linear energy drift of size O(τhmax{4,p})

▶ For trajectory lengths of τ ≈ 2, the energy drift will not have a significant
impact on the acceptance probability
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Additional order conditions

order #order conditions FGI #order conditions Hessian-free
2 2 2
4 2 2
6 4 5
8 10 13
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How to find efficient integrators

▶ efficiency measure

Eff(p) :=
1

(nf + c · ng)p · Errp+1

with Errp+1 norm of leading error coefficients (i.e. Poisson brackets are set
equal to one) [Omelyan, Mryglod, and Folk 2003]

▶ has been adapted for the Hessian-free variants by incorporating the
additional error terms [Schäfers et al. 2024]

▶ Numerical results emphasize that

integrator with highest efficiency value ̸= most efficient integrator
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Numerical stability

Hypothesis for interacting field theories
[Edwards, Horváth, and Kennedy 1997; Joó et al. 2000]

Since the high frequency modes of an asymptotically free field theory can be
considered as a collection of weakly coupled oscillator modes, the instability
described in the harmonic oscillator system will also be present for interacting
field theories. The onset of the instability will be caused by the mode with
highest frequency ωmax.
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Linear stability analysis

▶ application of (Hessian-free) force-gradient integrators to the harmonic
oscillator (

ṗ
q̇

)
=

[(
0 0
ω 0

)
+

(
0 −ω
0 0

)](
p
q

)
▶ since the right-hand side is linear, the two frameworks are equivalent

▶ exact solution(
p(h)
q(h)

)
=

(
cos(z) − sin(z)
sin(z) cos(z)

)
︸ ︷︷ ︸

=O(z)

(
p0
q0

)
, z := ωh.
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Linear stability analysis

▶ applying a self-adjoint force-gradient integrator yields an approximation

K(z) =
s∏

k=1

(
1 −bkz + 2ckz

3

0 1

)(
1 0
akz 1

)
=

(
p(z) K1,2(z)

K2,1(z) p(z)

)
to O(z) with stability polynomial p(z).

▶ By adapting the linear stability analysis for splitting methods [Blanes, Casas, and

Murua 2008], one can determine the stability threshold z∗ so that the integrator
is stable for all z ∈ (−z∗, z∗).
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Maximizing the stability threshold?
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Promising integrators

integrator ID p nf ng Eff(p) z∗/(nf + ng)

OMF2/2MN 2 2 0 29.2 1.2766
OMF4/4MN 4 5 0 59.3 0.6284
BADAB 4 2 1 17.0 1.1547

ABADABA 4 3 1 26.2 0.7844
BABADABAB 4 4 1 24.6 0.6225

OMF6 6 7 0 1.4 0.4515
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4D gauge field simulations in lattice QCD with Wilson fermions

ensemble with a 48× 243 lattice generated with two dynamical nonperturbatively
O(a) improved Wilson quarks with a mass equal to half of the physical charm
[Knechtli et al. 2022]

β = 5.3, κ = 0.1327, varying τ , step size h = τ/4
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openQCD package

▶ Hessian-free force-gradient integrators have been
implemented in openQCD (based on version 2.4).

▶ The code is publicly available on GitHub.

Thank you for your attention!
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Schäfers, Kevin et al. Hessian-free force-gradient integrators. 2024. arXiv:
2403.10370 [math.NA]. url: https://arxiv.org/abs/2403.10370.
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Determination of the stability threshold

▶ We denote by z∗ the largest real non-negative number such that
|p(z)| ≤ 1 ∀z ∈ [0, z∗]

▶ Suppose that 0 = z0 < z1 < . . . < zℓ are the real zeros with even multiplicity
of the polynomial p(z)2 − 1 in the interval [0, z∗]. Then, z∗ = z∗ if

K1,2(zk) = K2,1(zk) = 0

for each k = 1, . . . , ℓ. Otherwise, z∗ is the smallest zk violating the
condition.

▶ For |p(z)| < 1, the eigenvalues are distinct. For |p(z)| = 1, K(z) has double
eigenvalue 1 or −1 and thus is only diagonalizable if K(z) = ±I, i.e., if
K2,1(z) = K1,2(z) = 0.
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