Hessian-free force-gradient integrators

and their application to lattice QCD simulations

K. Schäfers, J. Finkenrath, M. Günther, F. Knechtli

41st Lattice Conference - Liverpool 2024

[Hessian-free force-gradient integrators](#page-1-0) [Accuracy and stability](#page-6-0) [Numerical results](#page-12-0) [References](#page-15-0)

 $e_i(U) \coloneqq -T_iU$

Decomposition algorithms

- \blacktriangleright Hamiltonian $\mathcal{H}(U, P) = \mathcal{T}(P) + \mathcal{V}(U)$
- \blacktriangleright equations of motion

$$
\begin{pmatrix} \dot{U} \\ \dot{P} \end{pmatrix} = \begin{pmatrix} 0 \\ \hat{\mathcal{V}}P \end{pmatrix} + \begin{pmatrix} \hat{\mathcal{T}}U \\ 0 \end{pmatrix}, \quad \hat{\mathcal{T}} = p^i \mathbf{e}_i, \ \hat{\mathcal{V}} = -\mathbf{e}_i(\mathcal{V}) \frac{\partial}{\partial p_i}
$$

- ▶ exact flows of subsystems
	- $\blacktriangleright \ \mathbf{e}^{h\hat{\mathcal{V}}}(U_0,P_0)=(U_0,P_0-he_i(\mathcal{V})T^i) \ \ \ \ \ \ \ \text{(momentum update)}$ ► $e^{h\hat{\mathcal{T}}}(U_0,P_0)=(\exp(-P_0h)U_0,P_0)$ (link update)

are reversible and symplectic maps.

▶ promising approaches: splitting methods [McLachlan and Quispel [2002\]](#page-16-0) and force-gradient integrators [Omelyan, Mryglod, and Folk [2003\]](#page-16-1)

Approximation of force-gradient updates [Schäfers et al. [2024\]](#page-16-2)

- ▶ force-gradient update: $P_0 b_k h e_i(V) T^i + 2c_k h^3 e^j(V) e_j e_i(V) T^i$
- idea dates back to [Wisdom, Holman, and Touma [1996\]](#page-17-0)
- \triangleright generalization to Lie groups \triangleright and Mawhinney [2012\]](#page-17-1)

Lie series expansion $(F_i\coloneqq-e_i(\mathcal{V}))$:

$$
P_0 - b_k h \mathbf{e}_i(\mathcal{V}) \left(\exp \left(\frac{2c_k h^2}{b_k} F^j(Q_0) T_j \right) Q_0 \right) T^i
$$

= $P_0 - b_k h \mathbf{e}_i(\mathcal{V}) T^i + 2c_k h^3 \mathbf{e}^j(\mathcal{V}) \mathbf{e}_j \mathbf{e}_i(\mathcal{V}) T^i$

$$
- \frac{2c_k^2 h^5}{b_k} \mathbf{e}^i(\mathcal{V}) \mathbf{e}^j(\mathcal{V}) \mathbf{e}_i \mathbf{e}_j \mathbf{e}_k(\mathcal{V}) + \frac{4c_k^3 h^7}{3b_k^2} \mathbf{e}^i(\mathcal{V}) \mathbf{e}^j(\mathcal{V}) \mathbf{e}^{\ell}(\mathcal{V}) \mathbf{e}_i \mathbf{e}_j \mathbf{e}_k(\mathcal{V}) + \mathcal{O}(h^9)
$$

no force-gradient term required at the price of a second force evaluation

Hessian-free force-gradient integrators [Schäfers et al. [2024\]](#page-16-2)

$$
\mathbf{e}^{b_k h \hat{\mathcal{D}}(b_k,c_k,h)}(U_0,P_0) \coloneqq \left(U_0,P_0-h\boldsymbol{e}_i(\mathcal{V})\left(\exp\left(-\frac{2c_k h^2}{b_k}\boldsymbol{e}^j(\mathcal{V})(Q_0)T_j\right)Q_0\right)T^i\right)
$$

Hessian-free force-gradient integrator

$$
\Phi_h = e^{b_s h \hat{\mathcal{D}}(b_s, c_s, h)} e^{a_s h \hat{\mathcal{T}}}} e^{b_{s-1} h \hat{\mathcal{D}}(b_{s-1}, c_{s-1}, h)} e^{a_{s-1} h \hat{\mathcal{T}}}\cdots e^{b_1 h \hat{\mathcal{D}}(b_1, c_1, h)} e^{a_1 h \hat{\mathcal{T}}}
$$

Approximation neither affects the time-reversibility nor the volumepreservation of the integrator, but it introduces additional error terms and the momentum updates are no longer symplectic!

On energy conservation of Hessian-free force-gradient integrators

- ▶ Hessian-free variants no longer preserve a shadow Hamiltonian
- In general: linear energy drift of size $\mathcal{O}(\tau h^{\max\{4,p\}})$
- **▶ For trajectory lengths of** $\tau \approx 2$, the energy drift will not have a significant impact on the acceptance probability

[Hessian-free force-gradient integrators](#page-1-0)
 $\overline{O} = 000000$
 \overline{O}

Additional order conditions

How to find efficient integrators

$$
Eff^{(p)} := \frac{1}{(n_f + c \cdot n_g)^p \cdot Err_{p+1}}
$$

with Err_{n+1} norm of leading error coefficients (i.e. Poisson brackets are set equal to one) [Omelyan, Mryglod, and Folk [2003\]](#page-16-1)

- \blacktriangleright has been adapted for the Hessian-free variants by incorporating the additional error terms [Schäfers et al. [2024\]](#page-16-2)
- ▶ Numerical results emphasize that

integrator with highest efficiency value \neq most efficient integrator

Numerical stability

Hypothesis for interacting field theories [Edwards, Horváth, and Kennedy [1997;](#page-15-1) Joó et al. [2000\]](#page-15-2)

Since the high frequency modes of an asymptotically free field theory can be considered as a collection of weakly coupled oscillator modes, the instability described in the harmonic oscillator system will also be present for interacting field theories. The onset of the instability will be caused by the mode with highest frequency ω_{max} .

Linear stability analysis

▶ application of (Hessian-free) force-gradient integrators to the harmonic oscillator

$$
\begin{pmatrix} \dot{p} \\ \dot{q} \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ \omega & 0 \end{bmatrix} + \begin{pmatrix} 0 & -\omega \\ 0 & 0 \end{pmatrix} \begin{bmatrix} p \\ q \end{bmatrix}
$$

 \triangleright since the right-hand side is linear, the two frameworks are equivalent exact solution

$$
\begin{pmatrix} p(h) \\ q(h) \end{pmatrix} = \underbrace{\begin{pmatrix} \cos(z) & -\sin(z) \\ \sin(z) & \cos(z) \end{pmatrix}}_{=O(z)} \begin{pmatrix} p_0 \\ q_0 \end{pmatrix}, \quad z := \omega h.
$$

Linear stability analysis

▶ applying a self-adjoint force-gradient integrator yields an approximation

$$
K(z) = \prod_{k=1}^{s} \begin{pmatrix} 1 & -b_k z + 2c_k z^3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a_k z & 1 \end{pmatrix} = \begin{pmatrix} p(z) & K_{1,2}(z) \\ K_{2,1}(z) & p(z) \end{pmatrix}
$$

to $O(z)$ with stability polynomial $p(z)$.

 \triangleright By adapting the linear stability analysis for splitting methods [Blanes, Casas, and Murua [2008\]](#page-15-3), one can determine the stability threshold z_* so that the integrator is stable for all $z \in (-z_*, z_*)$.

[Hessian-free force-gradient integrators](#page-1-0) **[Accuracy and stability](#page-6-0) [Numerical results](#page-12-0)** [References](#page-15-0)
 $\begin{array}{c}\n0.00000 \\
0.000000\n\end{array}$

Maximizing the stability threshold?

Promising integrators

4D gauge field simulations in lattice QCD with Wilson fermions

ensemble with a 48×24^3 lattice generated with two dynamical nonperturbatively $O(a)$ improved Wilson quarks with a mass equal to half of the physical charm [Knechtli et al. [2022\]](#page-16-3)

$$
\beta = 5.3, \quad \kappa = 0.1327, \quad \text{varying } \tau \text{, step size } h = \tau/4
$$

Acknowledgements

This work is supported by the German Research Foundation (DFG) research unit FOR5269 "Future methods for studying confined gluons in QCD". The lattice QCD simulations were carried out on the PLEIADES cluster at the University of Wuppertal, which was supported by the DFG and the Federal Ministry of Education and Research (BMBF), Germany.

[Hessian-free force-gradient integrators](#page-1-0) **[Accuracy and stability](#page-6-0) [Numerical results](#page-12-0) Numerical results** [References](#page-15-0)
 $\begin{array}{ccc}\n000000 & 0000\n\end{array}$

- \blacktriangleright Hessian-free force-gradient integrators have been implemented in openQCD (based on version 2.4).
- \blacktriangleright The code is publicly available on GitHub.

Thank you for your attention!

References I

Blanes, Sergio, Fernando Casas, and Ander Murua. "On the Linear Stability of Splitting Methods". In: Found. Comput. Math. 8.3 (2008), pp. 357–393. DOI: [10.1007/s10208-007-9007-8](https://doi.org/10.1007/s10208-007-9007-8). Edwards, R.G., Ivan Horváth, and A.D. Kennedy. "Instabilities and

non-reversibility of molecular dynamics trajectories". In: Nuclear Physics B 484.1 (1997), pp. 375–399. DOI:

[https://doi.org/10.1016/S0550-3213\(96\)00618-9](https://doi.org/https://doi.org/10.1016/S0550-3213(96)00618-9).

Joó, Bálint et al. "Instability in the molecular dynamics step of a hybrid Monte Carlo algorithm in dynamical fermion lattice QCD simulations". In: Phys. Rev. D 62 (11 Oct. 2000), p. 114501. doi: [10.1103/PhysRevD.62.114501](https://doi.org/10.1103/PhysRevD.62.114501). References II

Knechtli, Francesco et al. "Optimizing creation operators for charmonium spectroscopy on the lattice". In: Phys. Rev. D 106 (3 Aug. 2022), p. 034501. doi: [10.1103/PhysRevD.106.034501](https://doi.org/10.1103/PhysRevD.106.034501).

- McLachlan, Robert I. and G. Reinout W. Quispel. "Splitting methods". In: Acta Numer. 11 (2002), pp. 341-434. DOI: [10.1017/S0962492902000053](https://doi.org/10.1017/S0962492902000053). Omelyan, I.P., I.M. Mryglod, and R. Folk. "Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations". In: Comput. Phys. Commun. 151.3 (2003), pp. 272–314. DOI: [10.1016/S0010-4655\(02\)00754-3](https://doi.org/10.1016/S0010-4655(02)00754-3).
- Schäfers, Kevin et al. Hessian-free force-gradient integrators. 2024. arXiv: [2403.10370](https://arxiv.org/abs/2403.10370) [math.NA]. url: <https://arxiv.org/abs/2403.10370>.

References III

Wisdom, Jack, M Holman, and J Touma. "Symplectic correctors". In: Integration algorithms and classical mechanics. Amer. Math. Soc., 1996, pp. 217–244. Yin, Hantao and Robert D. Mawhinney. "Improving DWF Simulations: the Force Gradient Integrator and the Möbius Accelerated DWF Solver". In: PoS LATTICE2011 (2012). DOI: [10.22323/1.139.0051](https://doi.org/10.22323/1.139.0051).

Determination of the stability threshold

- ▶ We denote by z^* the largest real non-negative number such that $|p(z)|$ ≤ 1 ∀z ∈ [0, z^{*}]
- ▶ Suppose that $0 = z_0 < z_1 < \ldots < z_\ell$ are the real zeros with even multiplicity of the polynomial $p(z)^2-1$ in the interval $[0,z^\ast]$. Then, $z_\ast=z^\ast$ if

 $K_{1,2}(z_k) = K_{2,1}(z_k) = 0$

for each $k = 1, \ldots, \ell$. Otherwise, z_{*} is the smallest z_{k} violating the condition.

▶ For $|p(z)| < 1$, the eigenvalues are distinct. For $|p(z)| = 1$, $K(z)$ has double eigenvalue 1 or -1 and thus is only diagonalizable if $K(z) = \pm I$, i.e., if $K_{2,1}(z) = K_{1,2}(z) = 0.$