Improving HISQ Propagator solves using deflation

Leon Hostetler 1 , Kate Clark 2 , Carleton DeTar 3 , Steven Gottlieb 2 , Evan Weinberg²

> ¹ Indiana University ² NVIDIA ³ The University of Utah

August 1, 2024

LATTICE 2024 وطشاه المر **LIVERPOOL**

 E^* E^* E^* Ω

Outline

1 [Introduction](#page-2-0)

- **•** [Critical slowing down](#page-2-0)
- 2 [Deflation with Precise Eigenvectors](#page-6-0)
	- **[How it works](#page-6-0)**
	- **•** [Results](#page-9-0)
- 3 [Multi-Deflation with Sloppy Eigenvectors](#page-10-0)
	- **[How it works](#page-11-0)**
	- **•** [Results](#page-13-0)

4 [Outlook](#page-15-0)

4 **D F**

Outline

1 [Introduction](#page-2-0)

- [Critical slowing down](#page-2-0)
- [Deflation with Precise Eigenvectors](#page-6-0)
	- **[How it works](#page-6-0)**
	- **•** [Results](#page-9-0)
- [Multi-Deflation with Sloppy Eigenvectors](#page-10-0)
	- [How it works](#page-11-0)
	- **•** [Results](#page-13-0)

[Outlook](#page-15-0)

 $A \equiv A$ \equiv $B \equiv A$

Þ

 \rightarrow

4 D F

Critical slowing down in propagator calculation

- The CG iterations needed to compute propagators blows up as quark mass is decreased
- **2** CG iterations depends on the condition number of the Dirac matrix

$$
\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}, \qquad \text{with } \lambda_{\text{max}} \approx 23 \text{ and } \lambda_{\text{min}} = \epsilon_{\text{min}} + 4m^2
$$

Leon Hostetler (IU) **[HISQ Deflation](#page-0-0)** August 1, 2024 2/12

Status of HISQ Multigrid

- **1** 2018: Multigrid for 2D Schwinger model by Brower, Weinberg, Clark, and Strelchenko (PRD 97, 114513)
- **2** Multigrid in 4D support added to QUDA
- ³ 2022: Multigrid-preconditioned GCR for HISQ by Ayyar, Brower, Clark, Wagner, and Weinberg (arXiv: 2212.12559)
	- ▶ Critical slowing down nearly eliminated
	- ▶ 10x speedup over CG for light quark propagators on $144^3 \times 288$
- **4** 2023: 4-level multigrid for HISQ by Ayyar and Brower (unpublished)
	- ▶ Critical slowing down significantly reduced
	- ▶ Lots of tuning needed
	- ▶ 4x speedup over CG for light quark propagators on $144^3 \times 288$
- **3** 2024: HISQ operator added to PETSc

Now, back to deflation!

E H W E H E H H M Q C

In this talk...

- We experiment with deflation for Highly Improved **Staggered** Quarks (HISQ)
- Lattice configurations are from **MILC's "physical point" ensembles** with $a \approx 0.15$, 0.12, 0.09, 0.06, and 0.042 fm
- Eigenvectors (EVs) are generated using the staggered_eigensolve_test application from QUDA (<https://github.com/lattice/quda>)
- **Propagators are computed using the ks_spectrum application from** MILC (https://github.com/milc-qcd/milc_qcd)
	- ▶ Deflation and CG are offloaded to QUDA
- These tests were performed on **Frontier** (HPE Cray EX supercomputer) where each node has one 64-core AMD "Optimized 3rd Gen EPYC" CPU with 512 GB of memory and four AMD MI250X, each with 2 Graphics Compute Dies (GCDs) for a total of 8 GCDs per node
- Reported solve times do not include EV generation or loading times
- CG stopping criterion is a residual $< 10^{-8}$

Leon Hostetler (IU) The [HISQ Deflation](#page-0-0) August 1, 2024 4/12

 $E \rightarrow E E$ \rightarrow 0.4 \sim

Outline

[Introduction](#page-2-0)

- **[Critical slowing down](#page-2-0)**
- 2 [Deflation with Precise Eigenvectors](#page-6-0)
	- **[How it works](#page-6-0)**
	- **•** [Results](#page-9-0)
	- [Multi-Deflation with Sloppy Eigenvectors](#page-10-0)
		- [How it works](#page-11-0)
		- **•** [Results](#page-13-0)

[Outlook](#page-15-0)

 $A \equiv A$ \equiv $B \equiv A$

Þ

 \rightarrow

4 D F

HISQ Deflation

1 Eigensolve: Generate eigenvectors of

$\not\!\!D^{\scriptscriptstyle \dagger}\,\not\!\!D^{\scriptscriptstyle \dagger}$

using thick restarted Lanczos method (TRLM)

2 Propagator solve: Solve for ψ

$$
M^{\dagger} M \psi = \eta, \qquad M \equiv \emptyset + 2m
$$

using deflated conjugate gradient for the normal equations (CGNE): **O** Project eigenvectors $|v_i\rangle$ onto source vector

$$
x=\sum_i\ket{\mathsf{v}_i}\frac{1}{\lambda_i}\braket{\mathsf{v}_i|\eta}
$$

 \bullet Use x as initial guess to CG solver

ki≣ ⊳ l≣Ha kona G

HISQ Deflation

- **1** Deflation:
	- \triangleright Eigenvectors are used to get an initial guess that has the correct low mode components
	- \triangleright Then CG only has to deal with the high modes which converge more quickly
- **2** Critical slowing down is shifted from the CG solve to the eigensolve
- **3** What's the point then?
	- ▶ With undeflated CG, critical slowing down hits us on every solve
	- ▶ With deflated CG, critical slowing down hits us once per gauge configuration
	- ▶ Amortize the eigensolve cost over multiple propagator solves
- **4** As V is increased, deflation becomes relatively more costly
- **•** Eventually, we will need another solution...multigrid
- **6** But where?

 $E + 4E + E = 990$

 $64^3 \times 96$ (0.09 fm) on 12 nodes

- Left: CG iterations versus quark mass. At $m_{\ell, \text{phys}}$, the ratio of undeflated vs. deflation with 2048 EVs is 22x
- Right: Time to compute two propagators versus quark mass. We see a $6.8x$ speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

Outline

[Introduction](#page-2-0)

- **[Critical slowing down](#page-2-0)**
- [Deflation with Precise Eigenvectors](#page-6-0)
	- **[How it works](#page-6-0)**
	- **•** [Results](#page-9-0)

3 [Multi-Deflation with Sloppy Eigenvectors](#page-10-0)

• [How it works](#page-11-0)

• [Results](#page-13-0)

[Outlook](#page-15-0)

 $A \equiv A$ \equiv $B \equiv A$

B

 \rightarrow

4 D F

Deflation with Sloppy Eigenvectors

- With double precision eigenvectors, it is challenging to scale deflation to large volumes due to the size of the eigenvectors
	- \blacktriangleright Single parity storage
	- \triangleright Single precision eigenvectors
	- \blacktriangleright Half precision for the inner CG solves
- Result: Deflated CG performs well at first but then stagnates:

Example: $64^3 \times 96$ with $m_q = 0.000569$

Multi-Deflation with Sloppy Eigenvectors

- **4** Solution: Restart the CG and re-apply the initial deflation when residual drops by some factor
- ² Try different values for QUDA's tol_restart parameter
- **3** Find optimal value by looking at the solve time

Result:

- CG convergence similar to single deflation with precise EVs
- Memory savings lead to $3x$ reduction in number of nodes needed in this example
- Further increases solve speedup

Example: $64^{3} \times 96$ with $m_{q} = 0.000569$

 $64^{3} \times 96$ (0.09 fm) on 4 nodes

- Left: CG iterations versus quark mass. At $m_{\ell, \text{phys}}$, the ratio of undeflated vs. deflation with 2048 EVs is 22x
- Right: Time to compute two propagators versus quark mass. We see a 7.7x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

Leon Hostetler (IU) **[HISQ Deflation](#page-0-0)** August 1, 2024 10/12

 QQ

$144^3 \times 288$ (0.042 fm) on 192 nodes

- Left: CG iterations versus quark mass. At $m_{\ell, \text{phys}}$, the ratio of undeflated vs. deflation with 2048 EVs is 10x
- Right: Time to compute two propagators versus quark mass. We see a 4.6x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

Leon Hostetler (IU) [HISQ Deflation](#page-0-0) August 1, 2024 11 / 12

 QQ

Outline

[Introduction](#page-2-0)

- **[Critical slowing down](#page-2-0)**
- [Deflation with Precise Eigenvectors](#page-6-0)
	- **[How it works](#page-6-0)**
	- **•** [Results](#page-9-0)
- [Multi-Deflation with Sloppy Eigenvectors](#page-10-0)
	- [How it works](#page-11-0)
	- **•** [Results](#page-13-0)

 $A \equiv A$ \equiv $B \equiv A$

÷

 \rightarrow

4 D F

Outlook for HISQ Deflation

- **1** Deflation is a viable solution to the critical slowing down problem for contemporary lattice sizes
	- \triangleright Periodically restarting the CG and re-applying the deflation allows to use imprecise eigenvectors
	- ▶ Significant solve time speedups with room for further improvement
- ² Further improvements for HISQ deflation are in progress:
	- ▶ Multiple right-hand side solves (Recall Tuesday talk by Kate Clark and poster by Evan Weinberg)
	- ▶ QUDA memory usage
	- \triangleright Testing half-precision eigenvectors
	- ▶ Block TRLM to reduce eigensolve cost
	- ▶ Eigenvector compression
- ³ Head-to-head comparisons with MG-GCR and 4-level MG on $144^3 \times 288$ lattices

Thank you!

 \rightarrow 4 F \rightarrow F \pm 0.9.0

Additional Slides:

 $E|E| \leq 990$

 \rightarrow \pm

←ロ ▶ ← (伊 ▶

A note on results...

- "Solve times" reported here are actually for 2 propagators \times 3 colors $= 6$ total solves
- Solve times reported here do not include EV generation or loading times
- To take advantage of of QUDA's autotuning as we would in production running, we do a pre-tuning run to save the tune cache, and report timing from a second run that reads the cached parameters.
- CG stopping criterion is a residual $< 10^{-8}$

 E^* E^* E^* Ω

$32^{3} \times 48$ (0.15 fm) on 2 GCDs

- Left: CG iterations versus quark mass. At $m_{\ell, \text{phys}}$, the ratio of undeflated vs. deflation with 1024 EVs is 18x
- Right: Time to compute two propagators versus quark mass. We see a 9.0x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 1024 EVs

Leon Hostetler (IU) The Research [HISQ Deflation](#page-0-0) August 1, 2024 3/11

$48^{3} \times 64$ (0.12 fm) on 2 nodes

- Left: CG iterations versus quark mass. At $m_{\ell, \text{phys}}$, the ratio of undeflated vs. deflation with 1024 EVs is 10x
- Right: Time to compute two propagators versus quark mass. We see a $6.6x$ speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 1024 EVs

Leon Hostetler (IU) The [HISQ Deflation](#page-0-0) August 1, 2024 4/11

Challenges of Going to Larger Volumes

Double precision EVs take up a lot of space!

- Disk space: For example, 2.4TB for 2048 EVs of $64^3 \times 96$
- \bullet IO time: \sim 30 minutes to load these EVs from disk
- Memory: Requires 12 nodes whereas CG without deflation can run on 1 node!

Solutions:

- File size reduced by half when using EVs in *single parity* format and reduced by another half when saved in single precision
- IO improved by orders of magnitude when saving EVs in *partfile* format
- Memory usage halved by using single precision

 $A \equiv A$ $B \equiv A$

$96^3 \times 192$ (0.06 fm) on 27 nodes

- Left: CG iterations versus quark mass. At $m_{\ell, \text{phys}}$, the ratio of undeflated vs. deflation with 2048 EVs is 17x
- Right: Time to compute two propagators versus quark mass. We see a 8.9x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

Setup Costs

- The focus of this study was purely on solve time and not on optimizing setup costs
- Here are the (unoptimized) setup costs that I saw:

- Expect a 2-3x reduction in EV generation time once we start using Block TRLM
- Knobs to tune include Chebyshev parameters (min, max, and polynomial degree) and the size of the "batched rotation" space

Leon Hostetler (IU) The Research [HISQ Deflation](#page-0-0) August 1, 2024 7/11

 1 Includes everything—loading gauge field, computing fat and long links, the eigensolve, and saving EVs to disk

²Assumes partfile (with 8 \times Nodes $=$ MPI ranks) and single-parity storage with EVs in single precision KED KARD KED KED EE YOUR

HISQ Deflation I

The procedure used by ks_spectrum to compute the propagators:

$$
M^{\dagger}M\psi=\eta,
$$

is as follows:

1 MILC: Preconditions even and odd sites

$$
y = M^{\dagger} \eta
$$

- \bullet MILC: Prepares even site source y_e and passes it off to QUDA
- **3** QUDA: Loads the eigenvectors (previously done on CPU)
- ⁴ QUDA: Performs the deflation (previously done on CPU)
- **QUDA: Performs the CG solve**

$$
\psi_{\mathsf{e}} = \left(M^{\dagger}M\right)^{-1}y_{\mathsf{e}}
$$

 $A \equiv A$ $B \equiv A$

HISQ Deflation II

- MILC: Receives the even site solution ψ_e from QUDA
- **MILC:** Reconstructs the odd site solution ψ_o

$$
\psi_o = \frac{1}{2}m(D_{oe}\psi_e + \eta_o)
$$

8 QUDA: Polishes the odd site solution using one or more CG iterations

$$
\psi_{\bm{o}}=\left(M^{\dagger}M\right)^{-1}y_{\bm{o}}
$$

• Repeat all of the above for the other two colors

上日 りょう

HISQ Deflation III

Note:

• Odd part v_o of an eigenvector can be reconstructed from the even part V_{e}

$$
v_o = \frac{i}{\lambda} D_{oe} v_e
$$

See, e.g. arXiv:1710.07219

- Single parity format: Storage need (disk and memory) is reduced by half when we use only even part v_e
- Since odd site solution ψ_o is explicitly reconstructed from even site solution, there is no need for deflation for the odd sites
- Thus no need for us to ever compute or store the odd part v_o of the eigenvectors.

ki≣ ⊳ l≣Ha kona G

Speedups at $m_{\ell,phys}$ with 2048 EVs

Real-time speedups given identical resources:

Cost comparisons using minimal resources:

4 D F

 $E \rightarrow E E$ $E \rightarrow Q Q$