Improving HISQ Propagator solves using deflation

Leon Hostetler¹, Kate Clark², Carleton DeTar³, Steven Gottlieb², Evan Weinberg²

¹ Indiana University
 ² NVIDIA
 ³ The University of Utah

August 1, 2024

LATTICE 2024 LIVERPOOL

3 N 2 1 2 N Q (A

1/12

Outline

1 Introduction

- Critical slowing down
- 2 Deflation with Precise Eigenvectors
 - How it works
 - Results
- 3 Multi-Deflation with Sloppy Eigenvectors
 - How it works
 - Results

4 Outlook

Outline

1 Introduction

- Critical slowing down
- 2 Deflation with Precise Eigenvectors
 - How it works
 - Results
- 3 Multi-Deflation with Sloppy Eigenvectors
 - How it works
 - Results

4 Outlook

Critical slowing down in propagator calculation

The CG iterations needed to compute propagators blows up as quark mass is decreased

2 CG iterations depends on the condition number of the Dirac matrix

$$\kappa = rac{\lambda_{max}}{\lambda_{min}}, \qquad ext{with } \lambda_{max} pprox 23 ext{ and } \lambda_{min} = \epsilon_{min} + 4m^2$$

Status of HISQ Multigrid

- 2018: Multigrid for 2D Schwinger model by Brower, Weinberg, Clark, and Strelchenko (PRD 97, 114513)
- Ø Multigrid in 4D support added to QUDA
- 2022: Multigrid-preconditioned GCR for HISQ by Ayyar, Brower, Clark, Wagner, and Weinberg (arXiv: 2212.12559)
 - Critical slowing down nearly eliminated
 - ▶ 10x speedup over CG for light quark propagators on $144^3 \times 288$
- 2023: 4-level multigrid for HISQ by Ayyar and Brower (unpublished)
 - Critical slowing down significantly reduced
 - Lots of tuning needed
 - 4x speedup over CG for light quark propagators on $144^3 \times 288$
- 2024: HISQ operator added to PETSc

Now, back to deflation!

900 EIE 4EX 4E

In this talk...

- We experiment with deflation for Highly Improved **Staggered** Quarks (HISQ)
- Lattice configurations are from MILC's "physical point" ensembles with $a \approx 0.15, 0.12, 0.09, 0.06$, and 0.042 fm
- Eigenvectors (EVs) are generated using the staggered_eigensolve_test application from QUDA (https://github.com/lattice/quda)
- Propagators are computed using the ks_spectrum application from MILC (https://github.com/milc-qcd/milc_qcd)
 - Deflation and CG are offloaded to QUDA
- These tests were performed on Frontier (HPE Cray EX supercomputer) where each node has one 64-core AMD "Optimized 3rd Gen EPYC" CPU with 512 GB of memory and four AMD MI250X, each with 2 Graphics Compute Dies (GCDs) for a total of 8 GCDs per node
- Reported solve times do not include EV generation or loading times
- $\bullet~$ CG stopping criterion is a residual $< 10^{-8}$

Leon Hostetler (IU)

IN THE SOC

Outline

Introduction

- Critical slowing down
- 2 Deflation with Precise Eigenvectors
 - How it works
 - Results
 - 3 Multi-Deflation with Sloppy Eigenvectors
 - How it works
 - Results

4 Outlook

< A

↓ ∃ ► ↓ ∃ | = √Q ∩

HISQ Deflation

1 Eigensolve: Generate eigenvectors of

$\not\!\!D^\dagger \not\!\!D$

using thick restarted Lanczos method (TRLM)

2 Propagator solve: Solve for ψ

$$M^{\dagger}M\psi = \eta, \qquad M \equiv D / 2m$$

using deflated conjugate gradient for the normal equations (CGNE): • Project eigenvectors $|v_i\rangle$ onto source vector

$$x = \sum_i \ket{v_i} rac{1}{\lambda_i} raket{v_i |\eta}$$

Output State St

HISQ Deflation

- Deflation:
 - Eigenvectors are used to get an initial guess that has the correct low mode components
 - Then CG only has to deal with the high modes which converge more quickly
- **2** Critical slowing down is shifted from the CG solve to the eigensolve
- What's the point then?
 - ▶ With undeflated CG, critical slowing down hits us on every solve
 - With deflated CG, critical slowing down hits us once per gauge configuration
 - Amortize the eigensolve cost over multiple propagator solves
- **(4)** As V is increased, deflation becomes relatively more costly
- Seventually, we will need another solution...multigrid
- O But where?

$64^3 \times 96$ (0.09 fm) on 12 nodes

- Left: CG iterations versus quark mass. At m_{ℓ,phys}, the ratio of undeflated vs. deflation with 2048 EVs is 22x
- **Right:** Time to compute two propagators versus quark mass. We see a 6.8x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

Outline

Introduction

- Critical slowing down
- 2 Deflation with Precise Eigenvectors
 - How it works
 - Results
- 3 Multi-Deflation with Sloppy Eigenvectors
 - How it works

Results

4 Outlook

Deflation with Sloppy Eigenvectors

- With double precision eigenvectors, it is challenging to scale deflation to large volumes due to the size of the eigenvectors
 - Single parity storage
 - Single precision eigenvectors
 - Half precision for the inner CG solves
- Result: Deflated CG performs well at first but then stagnates:

Example: $64^3 \times 96$ with $m_q = 0.000569$

Multi-Deflation with Sloppy Eigenvectors

- Solution: Restart the CG and re-apply the initial deflation when residual drops by some factor
- Try different values for QUDA's tol_restart parameter
- Find optimal value by looking at the solve time

Result:

- CG convergence similar to single deflation with precise EVs
- Memory savings lead to 3x reduction in number of nodes needed in this example
- Further increases solve speedup

Example: $64^3 \times 96$ with $m_q = 0.000569$

9/12

$64^3 \times 96$ (0.09 fm) on 4 nodes

- Left: CG iterations versus quark mass. At m_{ℓ,phys}, the ratio of undeflated vs. deflation with 2048 EVs is 22x
- **Right:** Time to compute two propagators versus quark mass. We see a 7.7x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

$144^3 \times 288$ (0.042 fm) on 192 nodes

- Left: CG iterations versus quark mass. At m_{l,phys}, the ratio of undeflated vs. deflation with 2048 EVs is 10x
- **Right:** Time to compute two propagators versus quark mass. We see a 4.6x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

Outline

Introduction

- Critical slowing down
- 2 Deflation with Precise Eigenvectors
 - How it works
 - Results
- 3 Multi-Deflation with Sloppy Eigenvectors
 - How it works
 - Results

< A

Outlook for HISQ Deflation

- Deflation is a viable solution to the critical slowing down problem for contemporary lattice sizes
 - Periodically restarting the CG and re-applying the deflation allows to use imprecise eigenvectors
 - ▶ Significant solve time speedups with room for further improvement
- **②** Further improvements for HISQ deflation are in progress:
 - Multiple right-hand side solves (Recall Tuesday talk by Kate Clark and poster by Evan Weinberg)
 - QUDA memory usage
 - Testing half-precision eigenvectors
 - Block TRLM to reduce eigensolve cost
 - Eigenvector compression
- M Head-to-head comparisons with MG-GCR and 4-level MG on $144^3 \times 288$ lattices

Thank you!

Additional Slides:

Leon Hostetler (IU

三日 のへで

 $1 \, / \, 11$

A note on results...

- "Solve times" reported here are actually for 2 propagators \times 3 colors = 6 total solves
- Solve times reported here do not include EV generation or loading times
- To take advantage of of QUDA's autotuning as we would in production running, we do a pre-tuning run to save the tune cache, and report timing from a second run that reads the cached parameters.
- CG stopping criterion is a residual $< 10^{-8}$

$32^3 \times 48$ (0.15 fm) on 2 GCDs

- Left: CG iterations versus quark mass. At m_{ℓ,phys}, the ratio of undeflated vs. deflation with 1024 EVs is 18x
- **Right:** Time to compute two propagators versus quark mass. We see a 9.0x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 1024 EVs

$48^3 \times 64$ (0.12 fm) on 2 nodes

- Left: CG iterations versus quark mass. At m_{ℓ,phys}, the ratio of undeflated vs. deflation with 1024 EVs is 10x
- **Right:** Time to compute two propagators versus quark mass. We see a 6.6x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 1024 EVs

Challenges of Going to Larger Volumes

Double precision EVs take up a lot of space!

- \bullet Disk space: For example, 2.4TB for 2048 EVs of $64^3 \times 96$
- \bullet IO time: \sim 30 minutes to load these EVs from disk
- Memory: Requires 12 nodes whereas CG without deflation can run on 1 node!

Solutions:

- File size reduced by half when using EVs in *single parity* format and reduced by another half when saved in single precision
- IO improved by orders of magnitude when saving EVs in *partfile* format
- Memory usage halved by using single precision

▲ ■ ▶ ■ ■ ■ ● ● ● ●

$96^3\times192~(0.06~\text{fm})$ on 27 nodes

- Left: CG iterations versus quark mass. At m_{ℓ,phys}, the ratio of undeflated vs. deflation with 2048 EVs is 17x
- **Right:** Time to compute two propagators versus quark mass. We see a 8.9x speedup, assuming setup costs can be amortized, at $m_{\ell,phys}$ with 2048 EVs

Setup Costs

- The focus of this study was purely on solve time and not on optimizing setup costs
- Here are the (unoptimized) setup costs that I saw:

Size	Nodes	Total File Size	Generating 2048 EVs ¹	Loading 2048 EVs ²
$64^3 imes 96$	4	590GB	4014s	61s
$96^3 imes192$	27	3.98TB	6668s	62s
$144^3 imes 288$	192	20.2TB	10470s	45s

- Expect a 2-3x reduction in EV generation time once we start using Block TRLM
- Knobs to tune include Chebyshev parameters (min, max, and polynomial degree) and the size of the "batched rotation" space

¹Includes everything—loading gauge field, computing fat and long links, the eigensolve, and saving EVs to disk

²Assumes partfile (with $8 \times Nodes = MPI$ ranks) and single-parity storage with EVs in single precision $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box}$

HISQ Deflation I

The procedure used by ks_spectrum to compute the propagators:

$$M^{\dagger}M\psi = \eta,$$

is as follows:

MILC: Preconditions even and odd sites

$$y = M^{\dagger} \eta$$

- **2** MILC: Prepares even site source y_e and passes it off to QUDA
- **③** QUDA: Loads the eigenvectors (previously done on CPU)
- QUDA: Performs the deflation (previously done on CPU)
- **O QUDA:** Performs the CG solve

$$\psi_{\rm e} = \left(M^{\dagger}M\right)^{-1} y_{\rm e}$$

HISQ Deflation II

- **O** MILC: Receives the even site solution ψ_e from QUDA
- **@** MILC: Reconstructs the odd site solution ψ_{α}

$$\psi_o = \frac{1}{2}m(D_{oe}\psi_e + \eta_o)$$

QUDA: Polishes the odd site solution using one or more CG iterations

$$\psi_o = \left(M^{\dagger} M \right)^{-1} y_o$$

Provide the above for the other two colors

HISQ Deflation III

Note:

 Odd part v_o of an eigenvector can be reconstructed from the even part v_e

$$v_o = rac{i}{\lambda} D_{oe} v_e$$

See, e.g. arXiv:1710.07219

- Single parity format: Storage need (disk and memory) is reduced by half when we use only even part v_e
- Since odd site solution ψ_o is explicitly reconstructed from even site solution, there is no need for deflation for the odd sites
- Thus no need for us to ever compute or store the odd part v_o of the eigenvectors.

10/11

Speedups at $m_{\ell,phys}$ with 2048 EVs

Real-time speedups given *identical* resources:

		Without Deflation		With Deflation		
Size	$m_{\ell,phys}$	Nodes	Solve Time	Nodes	Solve Time	Speedup
$64^{3} \times 96$	0.0012	4	127.3s	4	16.55s	7.7x
$96^3 imes 192$	0.0008	27	366.6s	27	41.12s	8.9x
$144^3 imes 288$	0.000569	192	377.5s	192	82.23s	4.6 ×

Cost comparisons using *minimal* resources:

	Without Deflation			With Deflation			
Size	Nodes	Solve (s)	Cost (N-s)	Nodes	Solve (s)	Cost (N-s)	Efficiency
$64^{3} \times 96$	1	316.2	316.2	4	16.55	66.20	4.8x
$96^{3} \times 192$	3	1182	3546	27	41.12	1110	3.2x
$144^3 imes 288$	12	1777	21,320	192	82.23	15,790	1.4x

Image: Image:

↓ ∃ | = | = √ Q ∩