Topology in $U(N_c)$ Lattice Gauge Theories in 2D Philip Rouenhoff and Stephan Dürr

BERGISCHE UNIVERSITÄT WUPPERTAL

Motivation

In two dimensions, $U(N_c)$ gauge theory has non-trivial topology due to the $U(1)$ -factor in $U(N_c) = U(1) \rtimes SU(N_c)$. This leads to the algorithmic problem of topological freezing just like in 4D $SU(3)$, see Fig. [1.](#page-0-0)

Figure 1. Time series of the topological charge q in 2D $U(2)$ on different lattices of the same line of constant physics: the finer, the stronger the topological freezing.

A convenient, integer-valued definition for the topological charge q is given in Eq. [\(1\)](#page-0-1). For $U(2)$ in 2D one can show that the topological susceptibility χ_{top} takes the form of Eq. [\(3\)](#page-0-2), which agrees with numerical results in Fig. [2.](#page-0-3) $SU(N_c)$ theory is topologically trivial in 2D.

In the case of $U(2)$ one can embed the $U(1)$ -instanton in the following fashion (see Fig. [3\)](#page-0-4):

Figure 2. Comparison of analytical and mea-

- for even $q : \vec{u} \parallel \vec{v}$.
- for odd $q:~\vec{u} \perp \vec{v}$
- and $|\vec{u}| = |\vec{v}| = \frac{\pi}{2}$ 2

- $P_{xt}(\vec{n}) = e$ $i\frac{q\pi}{N_{\infty}N}$ $\frac{\overline{N_{x}N_{t}}}{N_{x}N_{t}}$ 1 \forall $\vec{n} \in \Lambda$ \Rightarrow minima of the gauge action
- *global* minima of the action: see Fig. [4\(b\)](#page-0-5)
- action given by Eq. (7) and plotted in Fig. [4\(a\)](#page-0-7)

Figure 3. A visualitzation of Eq.[\(6\)](#page-0-8), the instanton-like solutions for $U(2)$.

Instanton-like solutions in 2D QED on the lattice are given in [*J. Smit, J. Vink, Nucl. Phys. B, vol. 286, 1987*] as

$$
U_x(x,t) = e^{-it\frac{2\pi q}{N_x N_t}}, \quad U_t(x,t) = e^{ix\frac{2\pi q}{N_x} \delta_{t,N_t}}.
$$
 (5)

$$
U_x(x,t) = e^{-it\frac{\pi q}{N_x N_t}} \exp(i\vec{u}\vec{\sigma} \,\delta_{x,N_x}), \quad U_t(x,t) = e^{ix\frac{\pi q}{N_x} \delta_{t,N_t}} \exp(i\vec{v}\vec{\sigma} \,\delta_{t,N_t}), \quad (6)
$$

where $\vec{u}, \vec{v} \in \mathbb{R}^3$ depend on q :

Further information on these configurations:

 $\mathfrak{Re} \textsf{Tr} P_{xt} = (N_c-1)\cos$ $\int 2\pi z$ N_xN_t \setminus $+ \cos$ $\sqrt{2\pi}$ N_xN_t $\sqrt{ }$ $q-(N_c-1)z$ \bigwedge . (9)

While Fig. [5\(b\)](#page-0-10) suggests that these configurations may actually be saddle points, Fig. [5\(c\)](#page-0-11) shows that they are metastable with respect to cooling.

$$
S^{\mathbf{G}}[U] = \frac{\beta}{2} \sum_{\vec{n} \in \Lambda} \Re \mathbf{c} \mathbf{Tr} \big(\mathbf{1} - P_{xt}(\vec{n}) \big) = \beta N_x N_t \left(1 - \cos \left\{ \frac{q \pi}{N_x N_t} \right\} \right). \tag{7}
$$

The $U(2)$ -instantons are unique up to the following transformations:

- **gauge transformations** may rotate \vec{u} and \vec{v} (via quatern. representation)
- **multiplying the last** x **or** t **-slice (red or blue** links in Fig. [3\)](#page-0-4) with an appropriate $g \in U(N_c)$ may stretch \vec{u} and \vec{v} or shift the $U(1)$ -phase

Figure 5. In (a) the actions of the local minima in Eq. (8) are plotted for various values of z for $U(2)$. In (b) each link of the $(z = 5)$ -configuration at $q = 1$ was multiplied with a random $U(2)$ -element of Metropolis-step size ϵ and then flowed. The smaller ϵ , the longer it takes to flow into the sector minimum given by Eqs. [\(6\)](#page-0-8) and [\(7\)](#page-0-6). The $(\epsilon = 0.0)$ -curve shows that the local minima are stable stable under gradient flow. In (c) for every ϵ , 1000 Metropolis proposals were generated for the same $(z = 5)$ -configuration. The action difference ΔS is strictly positive for any ϵ . The lattice sizes used were $N_x = N_t = 32$ in all cases.

Note that for $q = N_c$ resp. $q = 2$ both Eqs. [\(6\)](#page-0-8) and (8) yield configurations whose links are proportional to 1 (or equivalent to such configurations), the most straightforward embedding of the $U(1)$ -instanton [\(5\)](#page-0-12).

 \blacktriangleright [philip.rouenhoff \[at\] uni-wuppertal.de](mailto:philip.rouenhoff@uni-wuppertal.de)

Figure 4. (a) shows the lower bound of the action per topological sector for $N_c = 2$, given by Eq. [\(7\)](#page-0-6). In (b) configurations of $|q|=1$ generated during a simulation with $\beta=6.0$ are stout smeared, and the difference of their action densities to Eq.[\(7\)](#page-0-6) is plotted against the gradient flow time $\tau=\rho\cdot N_{\sf smear}$. One can see that up to numeric precision they all converge towards the respective lower bound given of Eq. (7) . The lattice sizes used were $N_x = N_t = 32$ in both cases.

Local Minima per Sector

If we only require \Re eTr P_{xt} to be the same at every lattice site, as opposed to P_{xt} , we can derive further local minima of the gauge action. In this case it is more straightforward to generalize to $N_c \geq 2$: we adapt the $U(1)$ -factor and use the exponential of $\lambda_{N_c^2-1}$, the last generator of $\mathfrak{su}(N_c).$ By minimizing the gauge action of this ansatz, we obtain a solution for each $z \in \mathbb{Z}$:

$$
U_x(x,t) = e^{-it\frac{2\pi q}{N_c N_x N_t}} \exp\left(-it\frac{2\pi}{N_t N_x}\sqrt{\frac{N_c^2 - N_c}{2}} \left(z - \frac{q}{N_c}\right) \lambda_{N_c^2 - 1}\right)
$$
(8a)

$$
U_t(x,t) = e^{ix\frac{2\pi q}{N_c N_x}} \delta_{t,N_t} \exp\left(ix\frac{2\pi}{N_x}\sqrt{\frac{N_c^2 - N_c}{2}} \left(z - \frac{q}{N_c}\right) \delta_{t,N_t} \lambda_{N_c^2 - 1}\right).
$$

Fig. [5\(a\)](#page-0-9) shows the actions of these local minima, given by:

sured topological susceptibility for $U(2)$.

Global Minima per Sector: $N_c = 2$

