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Motivation

In two dimensions, U(Nc) gauge theory has non-trivial topology due to the
U(1)-factor in U(Nc) = U(1)o SU(Nc). This leads to the algorithmic problem
of topological freezing just like in 4D SU(3), see Fig. 1.

Figure 1. Time series of the topological charge q in 2D U(2) on different lattices of the same
line of constant physics: the finer, the stronger the topological freezing.

A convenient, integer-valued definition for the topological charge q is given
in Eq. (1). For U(2) in 2D one can show that the topological susceptibility χtop
takes the form of Eq. (3), which agrees with numerical results in Fig. 2.
SU(Nc) theory is topologically trivial in 2D.

Figure 2. Comparison of analytical and mea-
sured topological susceptibility for U(2).
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Global Minima per Sector: Nc = 2

Instanton-like solutions in 2D QED on the lattice are given in [J. Smit, J. Vink,
Nucl. Phys. B, vol. 286, 1987] as

Ux(x, t) = e−it 2πq
NxNt, Ut(x, t) = eix

2πq
Nx

δt,Nt. (5)

In the case ofU(2) one can embed theU(1)-instanton in the following fashion
(see Fig. 3):
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where ~u,~v ∈ R3 depend on q:

for even q : ~u ‖ ~v.
for odd q : ~u ⊥ ~v
and |~u| = |~v| = π

2

Further information on these
configurations:

Pxt(~n) = ei
qπ

NxNt 1∀~n ∈ Λ
⇒ minima of the gauge action
global minima of the action: see
Fig. 4(b)
action given by Eq. (7) and plotted
in Fig. 4(a)
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Figure 3. A visualitzation of Eq. (6), the
instanton-like solutions for U(2).
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The U(2)-instantons are unique up to the following transformations:

gauge transformations
may rotate ~u and ~v (via
quatern. representation)

multiplying the last x- or t-slice (red or blue
links in Fig. 3) with an appropriate g ∈ U(Nc)
may stretch ~u and ~v or shift the U(1)-phase
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Figure 4. (a) shows the lower bound of the action per topological sector forNc = 2, given by
Eq. (7). In (b) configurations of |q| = 1 generated during a simulation with β = 6.0 are stout
smeared, and the difference of their action densities to Eq. (7) is plotted against the
gradient flow time τ = ρ ·Nsmear. One can see that up to numeric precision they all
converge towards the respective lower bound given of Eq. (7). The lattice sizes used were
Nx = Nt = 32 in both cases.

Local Minima per Sector

If we only require ReTrPxt to be the same at every lattice site, as opposed to
Pxt , we can derive further local minima of the gauge action. In this case it is
more straightforward to generalize to Nc ≥ 2 : we adapt the U(1)-factor and
use the exponential of λN 2

c−1, the last generator of su(Nc). By minimizing the
gauge action of this ansatz, we obtain a solution for each z ∈ Z:
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Fig. 5(a) shows the actions of these local minima, given by:
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While Fig. 5(b) suggests that these configurations may actually be saddle
points, Fig. 5(c) shows that they are metastable with respect to cooling.
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Figure 5. In (a) the actions of the local minima in Eq. (8) are plotted for various values of z
for U(2). In (b) each link of the (z = 5)-configuration at q = 1 was multiplied with a random
U(2)-element of Metropolis-step size ε and then flowed. The smaller ε, the longer it takes to
flow into the sector minimum given by Eqs. (6) and (7). The (ε = 0.0)-curve shows that the
local minima are stable stable under gradient flow. In (c) for every ε, 1000 Metropolis
proposals were generated for the same (z = 5)-configuration. The action difference ∆S is
strictly positive for any ε. The lattice sizes used were Nx = Nt = 32 in all cases.

Note that for q = Nc resp. q = 2 both Eqs. (6) and (8) yield configurations
whose links are proportional to 1 (or equivalent to such configurations), the
most straightforward embedding of the U(1)-instanton (5).
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