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Introduction

Study of the 3D Ising model [1] in the infinite volume limit Nx,y,z → ∞, as well as the
“dimensionally reduced” Ising model with fixed Nz in the limit of Nx,y → ∞ by means of
Monte-Carlo simulations.
Determination of Tc as well as the critical exponents β, γ and ν, based on finite-size
scaling and histogram reweighting techniques.

Ising model

Simulation of the ferromagnetic Ising model with the well known Hamiltonian
H = −J

∑
⟨ij⟩∈Λ

σiσj, (1)

and the partition function
Z =

∑
σµ∈Ω

exp(−βH(σµ)) =
∑
σµ∈Ω

exp(̃J
∑
⟨ij⟩

σiσj), (2)

where β = 1
kBT and we defined J̃ := βJ.

Observables

We measure the following observables with N = NxNyNz

e =
1
N

∑
⟨ij⟩∈Λ

σiσj (3)

m =
1
N
∑
i∈Λ

σi (4)

C = J2N(⟨e2⟩ − ⟨e⟩2) (5)

χ = JN(⟨|m|2⟩ − ⟨|m|⟩2) (6)

U4 = 1 − ⟨|m|⟩4

3⟨|m|2⟩2
, (7)

where ⟨.⟩ denotes the ensemble average and U4 is called the Binder cumulant.

Finite-size scaling and Binder cumulant crossing

Make use of scaling relations to determine the infinite volume critical exponents.
Define reduced temperature as

t := T − Tc
Tc

(8)

as t → 0 and for large enough lattices, the following scaling relations hold:
maxC ∝ Lα/ν (9)

maxχ ∝ Lγ/ν (10)

⟨|m|⟩|̃J=J̃c ∝ L−β/ν (11)

∂U4

∂ J̃

∣∣∣∣̃
J=J̃c

∝ L1/ν, (12)

where L denotes the size of the scaled dimension (L = Nx,y,z for 3D and L = Nx,y for
“dimensionally reduced”).
Use crossing point of U4 as a function of J̃ for different lattice sizes L to determine J̃c.

Histogram reweighting

Expectation value of observable O at J̃ can be determined from data measured at J̃′ via

⟨O⟩J̃ =

〈
Oe−(̃J−J̃′)E

〉
J̃′〈

e−(̃J−J̃′)E
〉
J̃′

. (13)

Estimate maxima of C and χ using Golden-Section search algorithm in J̃.
Estimate crossings of U4 using Newtons method on ∆Uij

4 = ULi
4 − ULj

4 for ascending pairs of
lattice sizes L1 < L2 < L3 . . . .
Estimate ∂U4

∂ J̃

∣∣∣̃
J=J̃c

using explicit form of observable by differentiating equation 13
symbolically.

Estimation of peak parameters

Histogram reweighting only feasible in close proximity to simulated coupling.
Estimation of simulation temperatures using fits to bunches of simulations in
neighborhood of estimated peak/critical coupling.
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Error estimation

Use of delete-d-jackknife to estimate statistical errors.
d is chosen such that the data is divided into 10000 jackknife-blocks.
Ensemble sizes between 106-108 and autocorrelation times between 1-15 ⇒ d ≫ 2τint + 1.
Scaling relations only asymptotically valid ⇒ systematic deviation from true exponent if
smallest L = Lmin included in fit is not large enough.
Exclude smallest L from fit one by one until estimator of exponent does not change
significantly (see below for estimators of γ/ν and β/ν obtained from fits as a function of
minimal lattice size Lmin included).
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Smallest Lmin, for which the asymptotic scaling relation can be used, varies strongly
between exponents (O(30)-O(500)). Generally Lmin becomes larger for large Nz.

Results

The critical temperature and the critical exponents for Nz = 1,2,4,8 are shown below.
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With the help of the hyperscaling relation and the Rushbrook equation, it is possible to
determine the effective dimension of the system using

deff =
2β + γ

ν
. (14)

Critical temperatures, critical exponents and effective dimensions for different Nz:
Nz J̃c β/ν γ/ν ν deff
1 0.4406870(19) 0.125041(85) 1.75050(66) 1.0003(15) 2.00058(69)
2 0.27603219(13) 0.125018(33) 1.74995(79) 1.00039(59) 1.99998(79)
4 0.23602775(14) 0.125032(50) 1.75050(70) 0.9988(15) 2.00057(70)
8 0.22610278(51) 0.1256(13) 1.753(17) 1.0005(60) 2.004(18)
3D 0.22165494(49) 0.5193(13) 1.9632(50) 0.62875(82) 3.0019(61)

Conclusions

For J̃c we find a smooth transition curve which connects the well known critical
temperatures of the 2D and the 3D Ising model.
In contrast to previous work on this topic [2][3][4], our data suggests that the
“dimensionally reduced” Ising model is in the same universality class as the 2D Ising
model, regardless of Nz.
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