

Contribution ID: 373

Type: Poster

Numerical study of the dimensionally reduced 3D Ising model

Tuesday, 30 July 2024 18:15 (1 hour)

We study the 3D Ising model in the infinite volume limit $N_{x,y,z} \to \infty$ by means of numerical simulations. We determine T_c as well as the critical exponents α, β, γ and ν , based on finite-size scaling and histogram reweighting techniques. In addition, we study a "dimensionally reduced" scenario where N_z is kept fixed (e.g. at 2, 4, 8), while the limit $N_{x,y} \to \infty$ is taken. For each fixed N_z we determine T_c as well as $\alpha, \beta, \gamma, \nu$. For T_c we find a smooth transition curve which connects the well known critical temperatures of the 2D and the 3D Ising model. Regarding $\alpha, \beta, \gamma, \nu$ our data suggest that the "dimensionally reduced" Ising model is in the same universality class as the 2D Ising model, regardless of N_z .

Primary author: KIEL, Tolga (University of Wuppertal)
Co-author: DURR, Stephan (University of Wuppertal)
Presenter: KIEL, Tolga (University of Wuppertal)
Session Classification: Poster session and reception

Track Classification: Theoretical Developments