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Renormalization group transformation

▷ Coarse lattices can lead to large lattice artifacts
▷ Fine lattices can lead to critical slowing down & topological freezing
▷ The aim of a renormalization group transformation (RGT) is to

describe the physics of the fine lattice on a coarse lattice

Renormalization group blocking

▷ Fixed point action defined through RG blocking

▷ Many gauge links over hypercube contribute to blocked link

Preserving gauge symmetry in neural networks

▷ 4D lattice gauge theory: input W (x⃗) ∈ CNc×Nc , Uµ(x⃗) ∈ CNc×Nc

∗ Gauge transformations:

W (x⃗) → Ω(x⃗)W (x⃗)Ω†(x⃗), Ω(x⃗) ∈ CNc×Nc

Uµ(x⃗) → Ω(x⃗)Uµ(x⃗)Ω
†(x⃗+ µ⃗)

▷ New architecture: lattice gauge equivariant CNNs (L-CNNs) [1]

▷ Convolutional layers with parallel transport retain gauge symmetry
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Fixed point action

exp(−β′A′[V ]) =

∫
DU exp(−β{A[U ]+T [U, V ]})

▷ Define a RGT for lattice action A from fine lattice U to coarse lattice
V with blocking kernel T [U, V ] and gauge coupling β

▷ Renormalized trajectory (RT) at weak coupling expected to stay
close to fixed point (FP) action with fixed couplings ci

▷ Fixed point: β → ∞ AFP[V ] = minU
(
AFP[U ] + T [U, V ]

)
▷ Parametrization: AFP form unknown, FP eq gives data for each V

Gradient flow cutoff artifacts
▷ Cutoff artifacts in gradient flow at tree level

Af : flow action Ag: MC ensemble Ae: observable

⟨t2E(t)⟩ = (N2−1)g2
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[
e−t(Af+G)(Ag + G)−1e−t(Af+G)Ae

]
⟨t2E(t)⟩ = 3(N2−1)g2

0

128π2 [C(a2/t)+O(g20)] tree-level artifacts: C(a2/t)

▷ FP action: C(a2/t) = 1 no tree-level artifacts, classically perfect

Gradient flow scales
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Preliminary

▷ Gradient flow with FP action dVµ/dt = −δAFP/δVµ

▷ FP action also used for action density observable ⟨t2E(t)⟩
▷ possible physical scales: t2⟨E⟩|t=t0 = 0.3, t d

dt

(
t2⟨E⟩

)
|t=w2

0
= 0.3

▷ Flow equation integrated with 3rd order Runge-Kutta scheme

▷ MC ensembles also generated with FP action

Parametrization and simulation with fixed point action
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▷ Best model: L-CNN with 3
layers with 12, 24, 24 channels
and kernel size 2, 2, 1

▷ L-CNN superior to older FP
parametrizations [2]
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▷ HMC algorithm Omelyan
integrator, correct Hamilto-
nian distribution
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▷ MC history plaquette

▷ Algorithmic: use backpropagation through L-CNN for δAFP/δV in
parametrization of FP action, HMC updates and gradient flow
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