LA-UR-24-28234

Real-time dynamics from convex geometry

Scott Lawrence

2 August 2024

Convex geometry in quantum physics

 $\langle {\cal O}^{\dagger} {\cal O}
angle \geq 0$ "...the rest is commentary."

Consider vectors $E_i \equiv \langle \mathcal{O}_i \rangle$. With a basis of *N* operators, this defines a space $\approx \mathbb{R}^N$. The *allowed* space is a convex subset.

Convex spaces can be efficiently explored

CFT Bootstrap

From arXiv:1603.04436

[Han-Hartnoll-Kruthoff 2004.10212] [Berenstein-Hulsey 2108.08757] [SL 2111.13007] [SL 2211.08874]

Spectral densities, in QM or QFT:

 $\rho(\omega) \ge 0$

The spectral density function

 $G^{(R)}(t) = \operatorname{Im} \langle \mathcal{O}(t) \mathcal{O}(0) \rangle$ and $G^{(E)}(\tau) = \langle \mathcal{O}(-i\tau) \mathcal{O}(0) \rangle$

$$G^{(R)}(t) = -\int_0^\infty d\omega \,\rho(\omega) \sin \omega t$$
$$G^{(E)}(\tau) = \int d\omega \,\rho(\omega) \frac{\cosh \omega \left(\frac{\beta}{2} - \tau\right)}{\sinh \frac{\beta \omega}{2}}$$

 $G^{(\cdot)(t)} \leftrightarrow \rho(\omega)$ is linear

The ill-posed inverse problem

But we have not imposed $\rho(\omega) \geq 0$.

Asking the right question

An experimentalist *cannot* measure $\rho(\omega)$.

Only various integrals.

An experimentalist *cannot* measure $G^{(R)}(t)$.

Time-energy uncertainty!

It makes much more sense to ask about:

$$ilde{G}^{(R)}(t;\sigma) = \int dt' \ G^{(R)}(t') e^{-rac{(t-t')^2}{2\sigma^2}}$$

In general: $\int \rho(\omega) \mathcal{K}(\omega)$ for smooth, rapidly decaying kernel \mathcal{K} .

Transport coefficients are often defined in the infinite time limit. This is not probed by any experiment!

Example: hydrodynamic modelling of heavy-ion collisions

Positive AC I: Continuation from exact Euclidean data

0.4 -

minimize
$$\int \mathcal{K}\rho$$

subject to $\int \mathcal{K}_i\rho = C_i$
and $\rho \ge 0$

Solved via interior-point method.

Solid: real-time correlator. Dashed: smeared correlator. Points: bounded smeared correlator.

$$V_{ au} = 20, \ \sigma = 0.5, \ eta = 0.5, \ H = rac{1}{2}p^2 + rac{1}{2}x^2 + rac{1}{2}x^4$$

Measured correlators: $C_i \approx G^{(E)}(\tau_i)$

Error vector:
$$v_i = C_i - \int \rho(\omega) K(\tau_i, \omega)$$

where $K(\tau, \omega) = \frac{\cosh \omega(\frac{\beta}{2} - \tau)}{\sinh \frac{\beta \omega}{2}}$

Via (statistical) bootstrap, we can get the distribution of $v^T M v$ for any procedure for constructing M. This defines a "confidence region" of ρ :

 $\{\rho(\omega) \mid \mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{v} < \epsilon_{99\%}\}$

This region is convex. Intersection with another convex region $(\rho \ge 0)$ is also convex.

So you think you know what a Lagrangian is...

$$L(x,\lambda) = f(x) - \lambda g(x)$$

The primal:

minimize
$$f(x)$$

subject to $g(x) \ge 0$ $\implies p^* = \min_{x} \max_{\lambda \ge 0} L(x, \lambda)$

The dual:

$$d^* = \max_{\substack{\lambda \ge 0 \\ x}} \min_{x} L(x, \lambda) \implies \max_{\substack{\text{subject to } \lambda \ge 0}} \min_{x} L(x, \lambda)$$

Weak duality: $d^* \le p^*$. Strong duality: $d^* = p^*$.

Positive AC II: The anharmonic oscillator

 $\beta=20, \ \omega^2=0.01, \ \lambda=0.001.$ From 10² and 10³ samples. Smeared with $\sigma=5.0.$ 99% confidence region.

- Heavy-ion collisions happen pretty quickly!
- Bounds of this form are "optimal" provided no other constraints are known.
- Is Gaussian smearing optimal/necessary?
- More than one operator can be included in the analysis, enabling access to "off-diagonal" correlators, and suggesting the use of Schwinger-Dyson relations.

This is a rapidly developing field. Stay tuned...