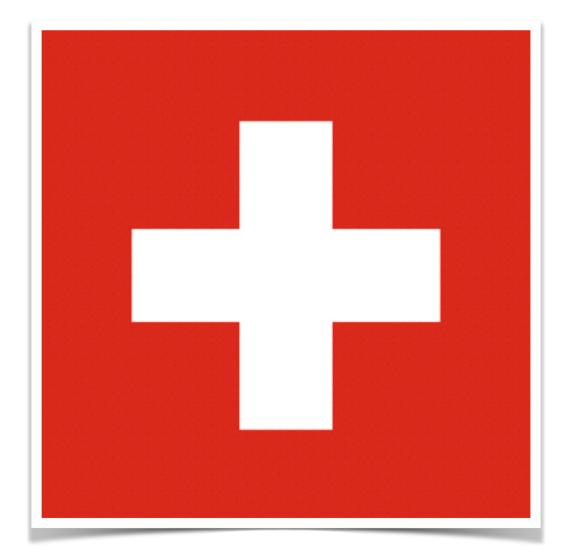
Unfreezing topology with Nested Sampling in the 2d quenched Schwinger model

Urs Wenger University of Bern, Switzerland

in collaboration with: Gurtej Kanwar Simone Romiti

b UNIVERSITÄT BERN

]



International Lattice Conference 2024 2 August 2024, Liverpool, UK

Bayesian evidence integral:

$$Z = \int \mathscr{L}(\theta) \pi(\theta) d\theta$$

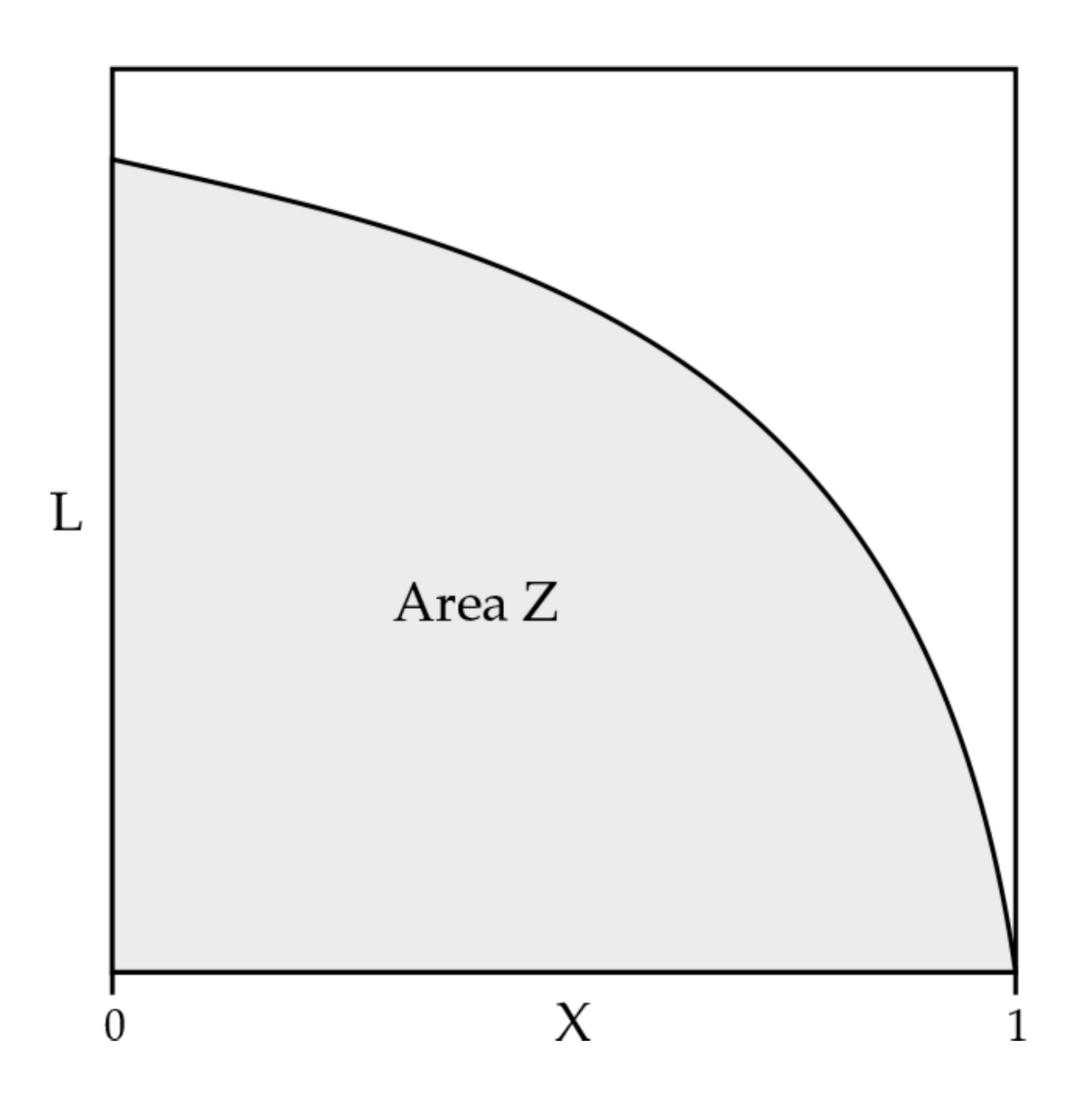
 $\pi(\theta)$:prior distribution $\mathscr{L}(\theta)$:likelihoodZ:evidence

Bayesian evidence integral:

$$Z = \int \mathscr{L}(\theta) \pi(\theta) d\theta$$

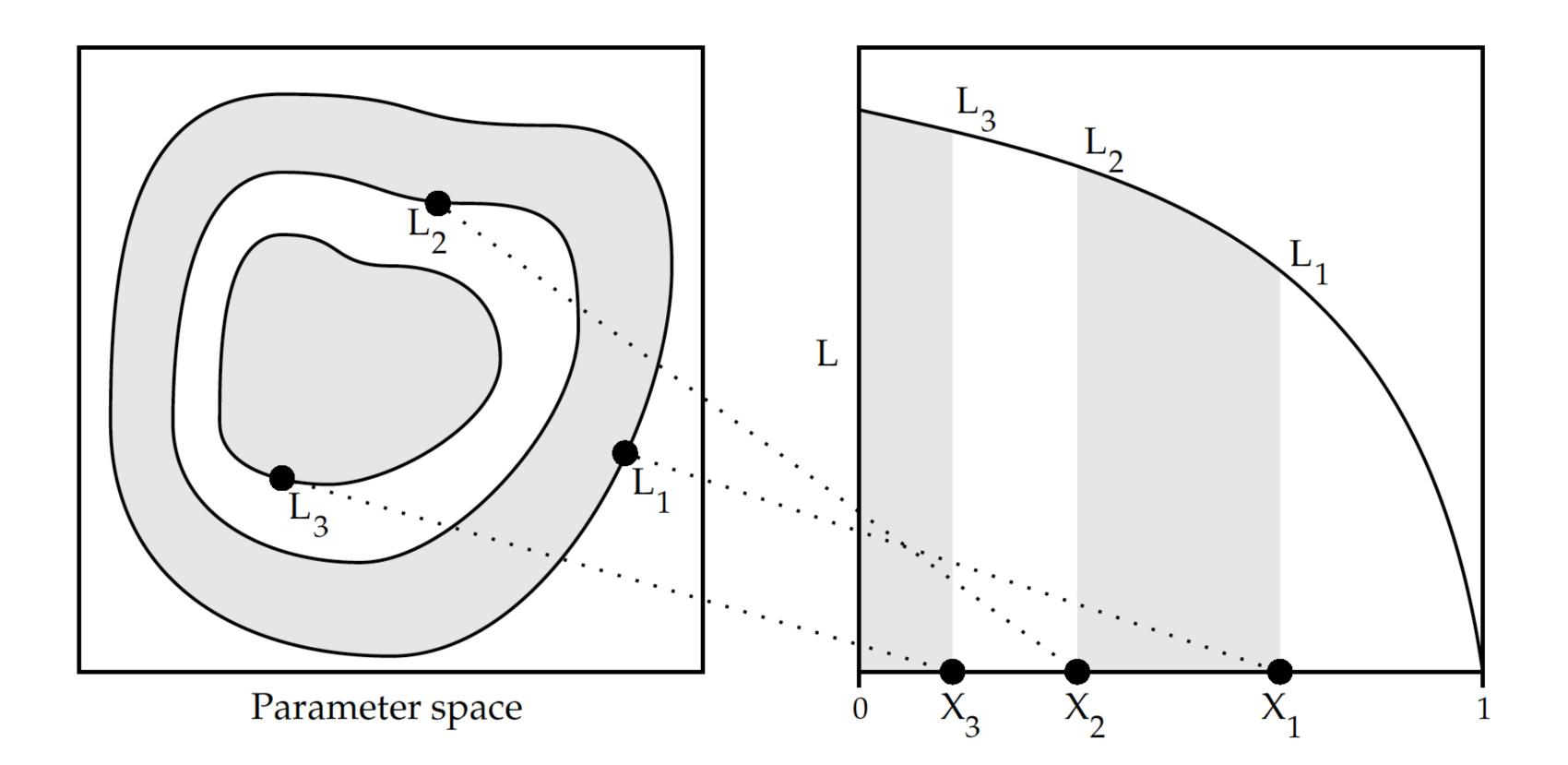
 $\pi(\theta)$:prior distribution $\mathscr{L}(\theta)$:likelihoodZ:evidence

Transform to 1-dim. integral: $dX = \pi(\theta)d\theta$ $X(\lambda) = \int_{\mathscr{L}(\theta) > \lambda} \pi(\theta) d\theta$ such that: $Z = \int_0^1 \mathscr{L}(X) dX$

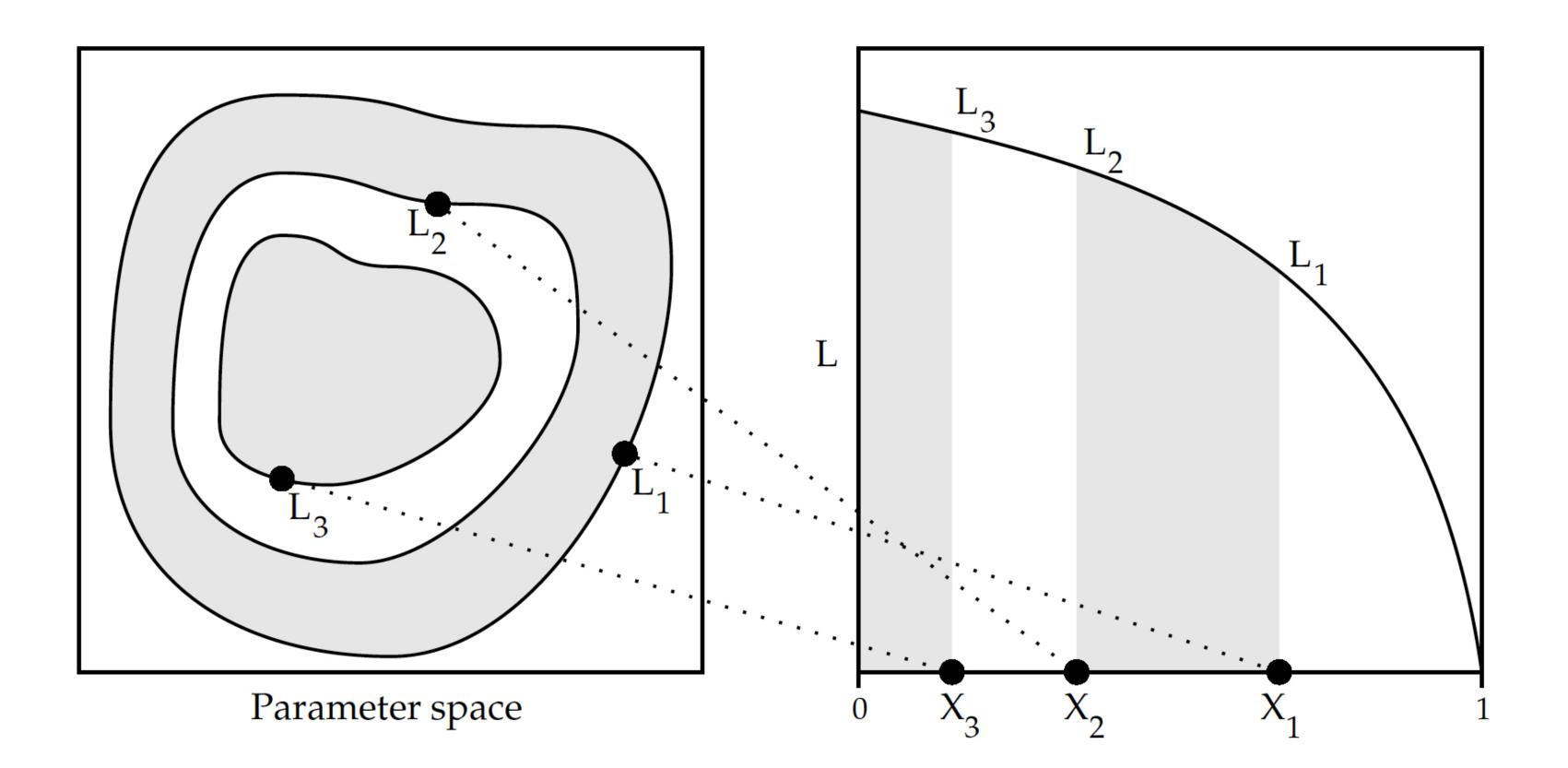


Transform to 1-dim. integral: $dX = \pi(\theta)d\theta$ $X(\lambda) = \int_{\mathcal{L}(\theta) > \lambda} \pi(\theta) d\theta$ such that: $Z = \int^{1} \mathscr{L}(X) dX$

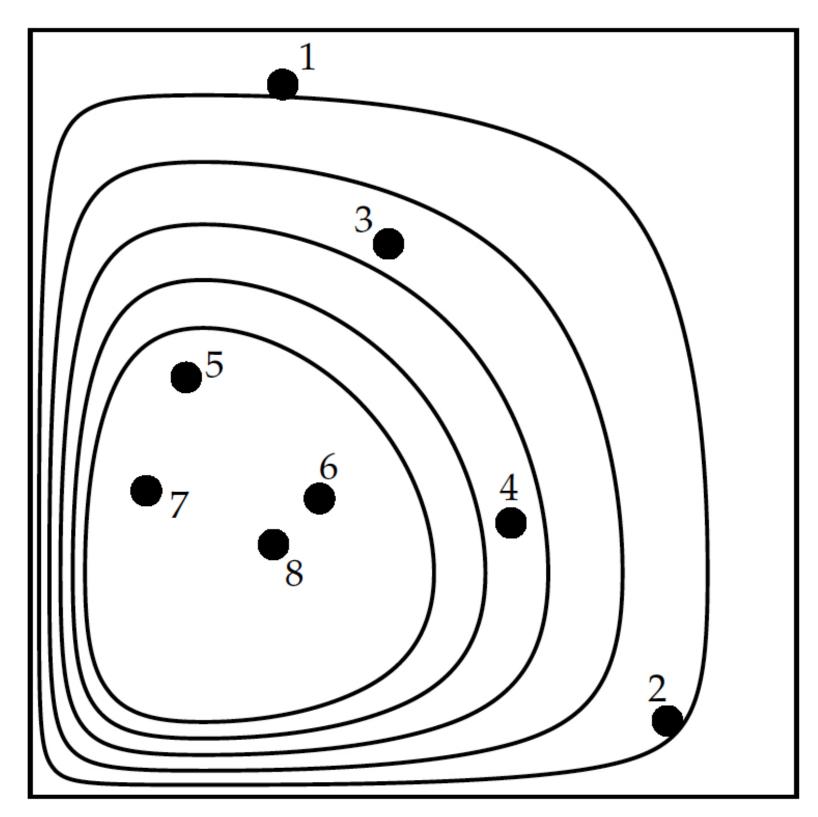
Draw samples uniformly from $\pi(\theta)d\theta$:



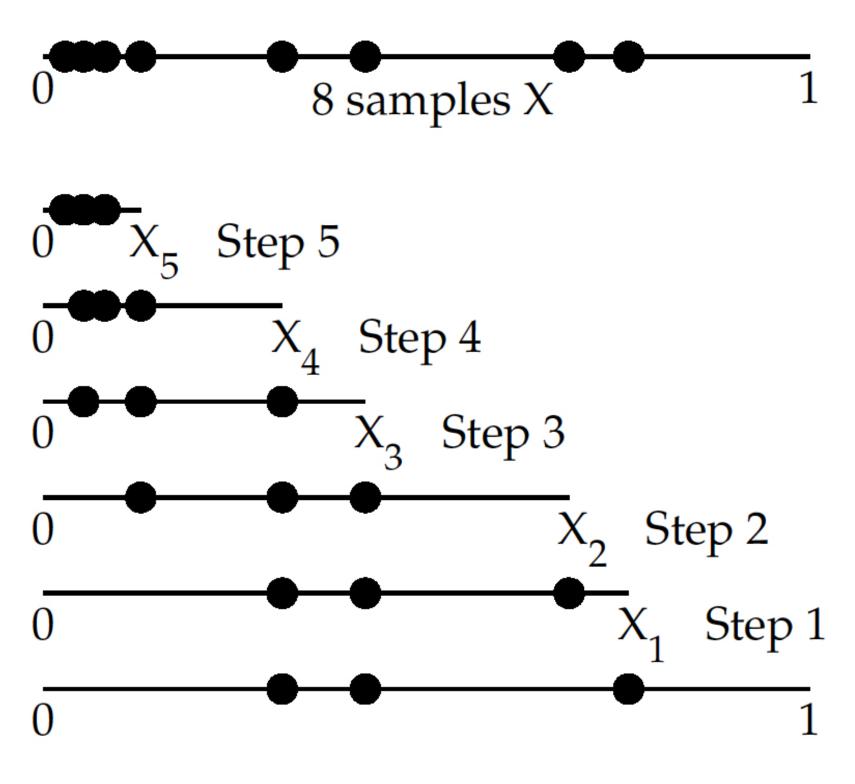
Draw samples uniformly from $\pi(\theta)d\theta$:



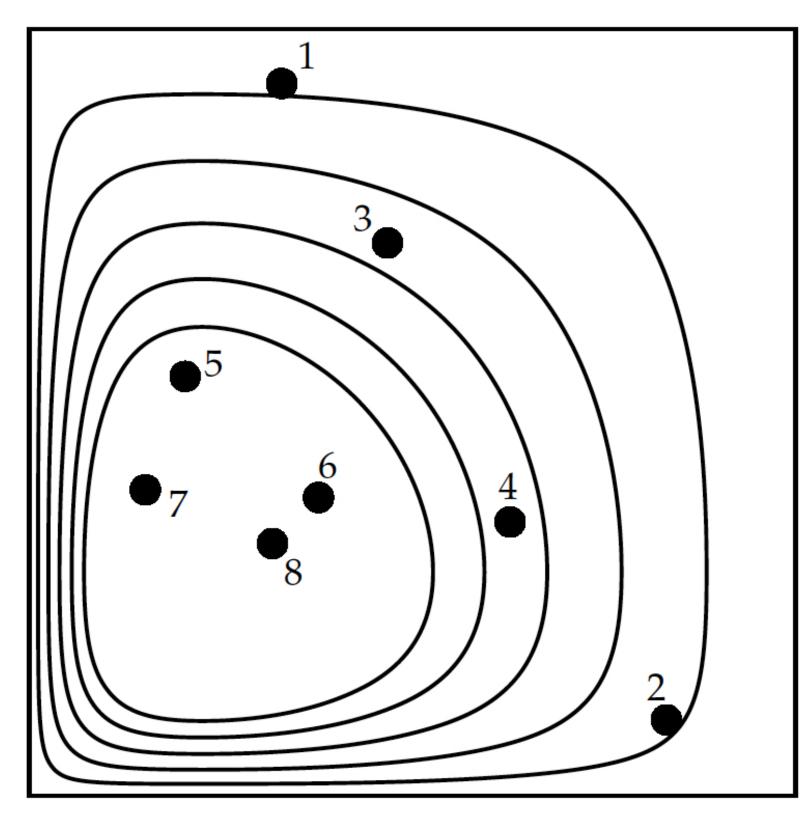
 L_i 's can be calculated. X_i 's are unknown, but: $X_0 = 1, \quad X_i = t_i X_{i-1}$ $\Pr(t_i) = N t_i^{N-1} \text{ in (0,1)}$ with $\langle \ln t \rangle = -1/N$



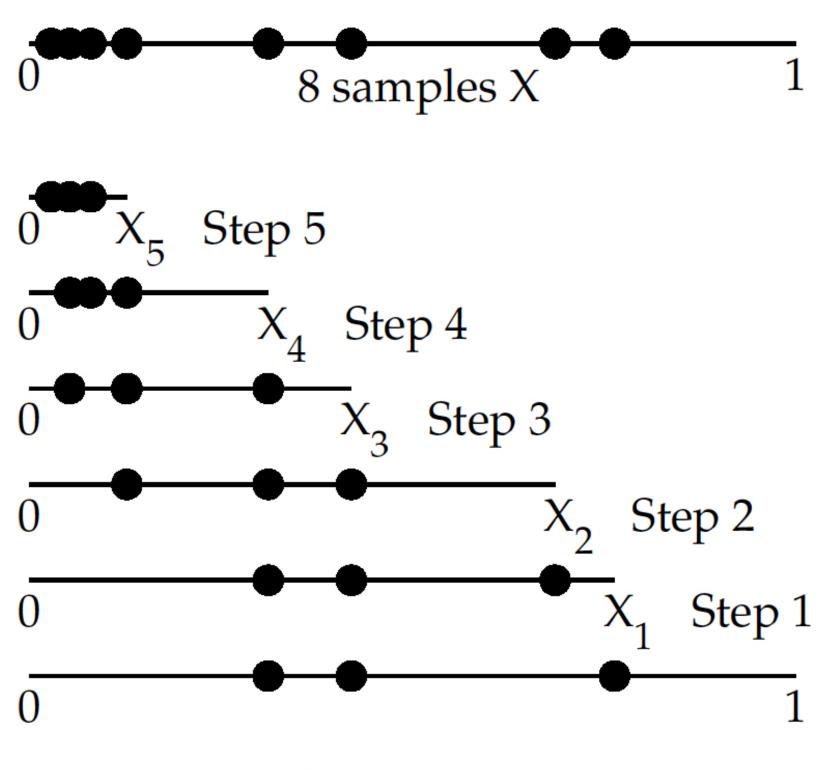
Parameter space



Enclosed prior mass X



Parameter space



Enclosed prior mass X

Result from simulation: \Rightarrow ordered list of $\{X_i, L_i\}$

Application to QFT

$$Z(\beta) = \int L^{\beta} dX \qquad \text{with } L = \epsilon$$

Nested sampling also yields density of states $\rho(S) = -\frac{dX}{d \ln L}$ and hence: and hence:

$$Z(\beta) = \int e^{-\beta S} \rho(S) \, dS$$

$\exp(-S)$

a posteriori for any β !

Application to QFT

$$Z(\beta) = \int L^{\beta} dX \qquad \text{with } L = \epsilon$$

Nested sampling also yields density of states $\rho(S) = -\frac{d\ln L}{d\ln L}$ and hence:

$$Z(\beta) = \int e^{-\beta S} \rho(S) \, dS$$

Example application: 2d quenched Schwinger model

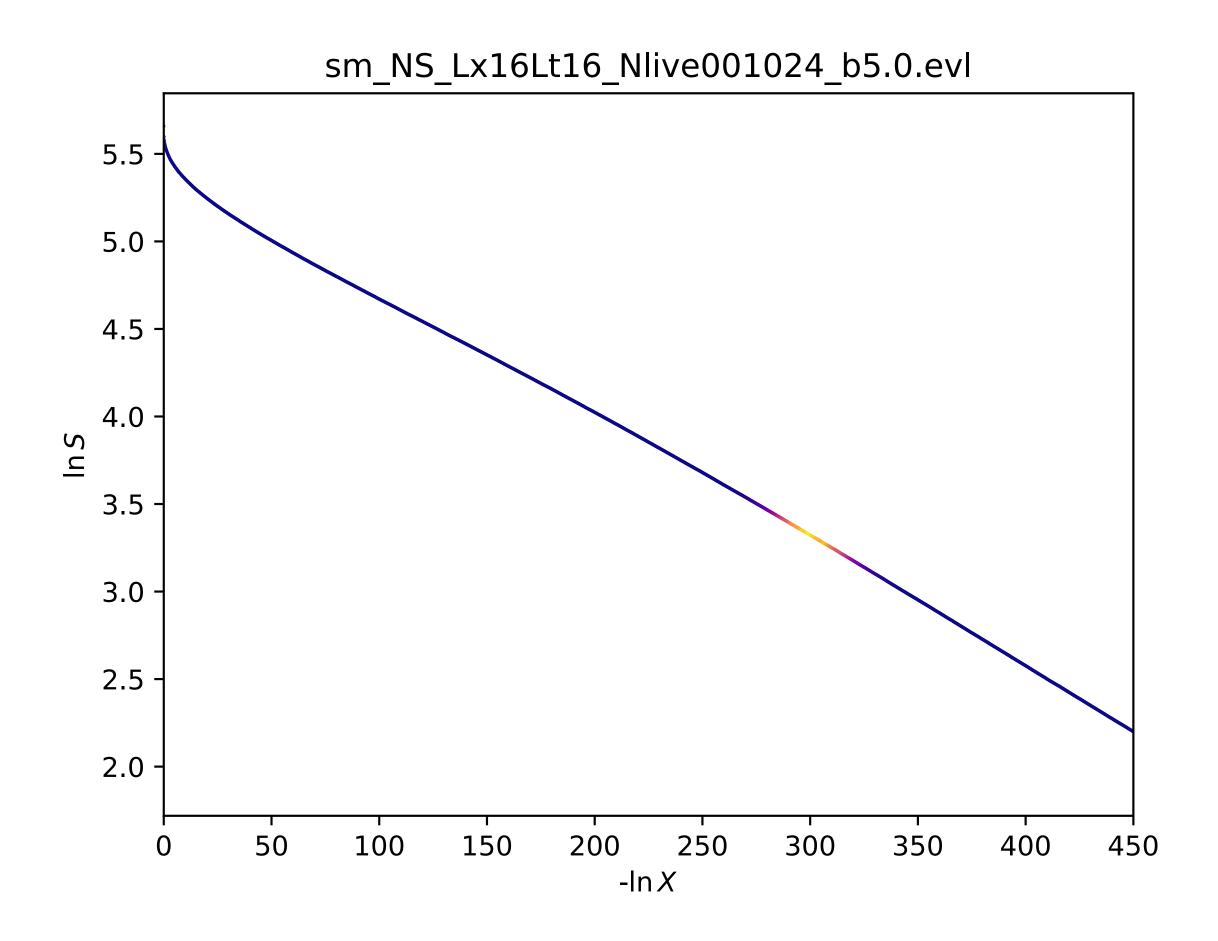
$\exp(-S)$

dX

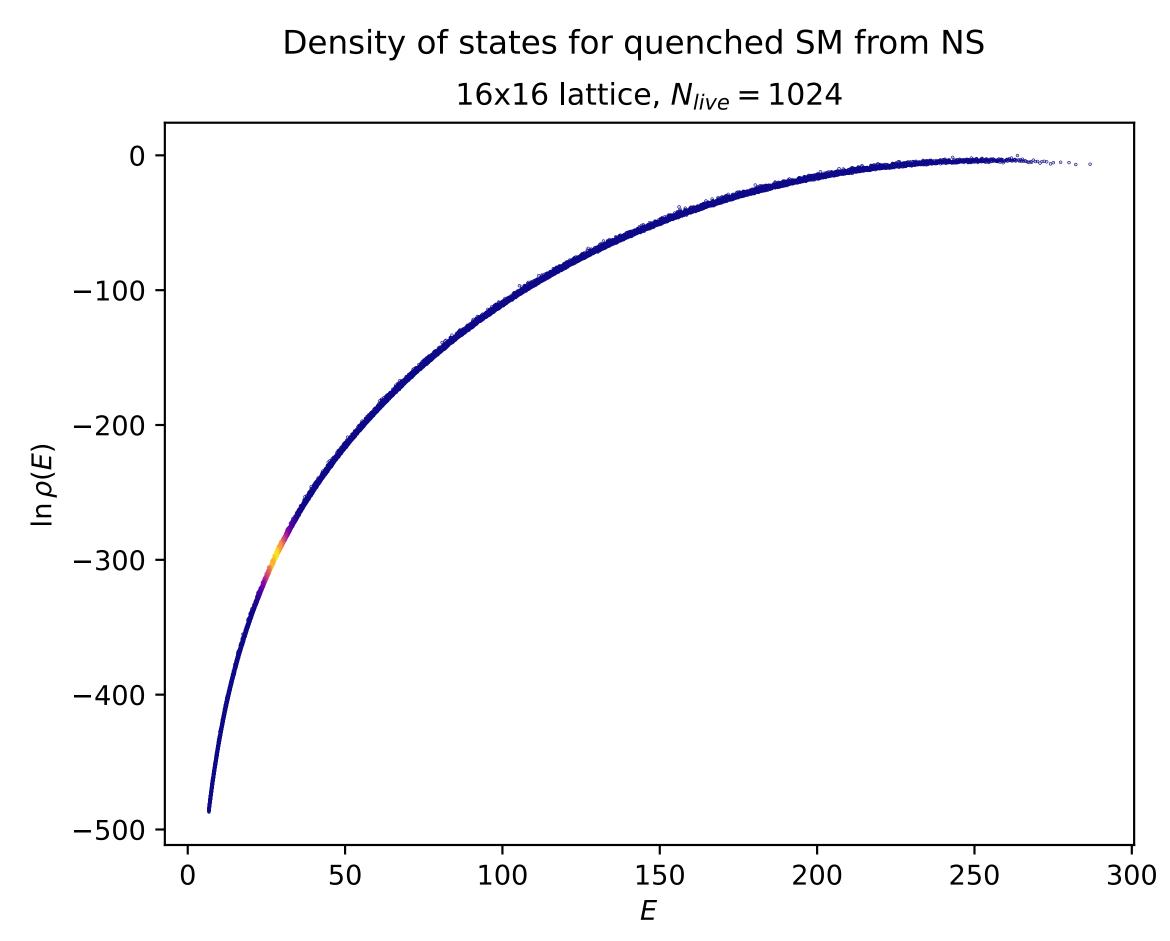
a posteriori for any β !

Likelihood L vs. prior volume X and density of states

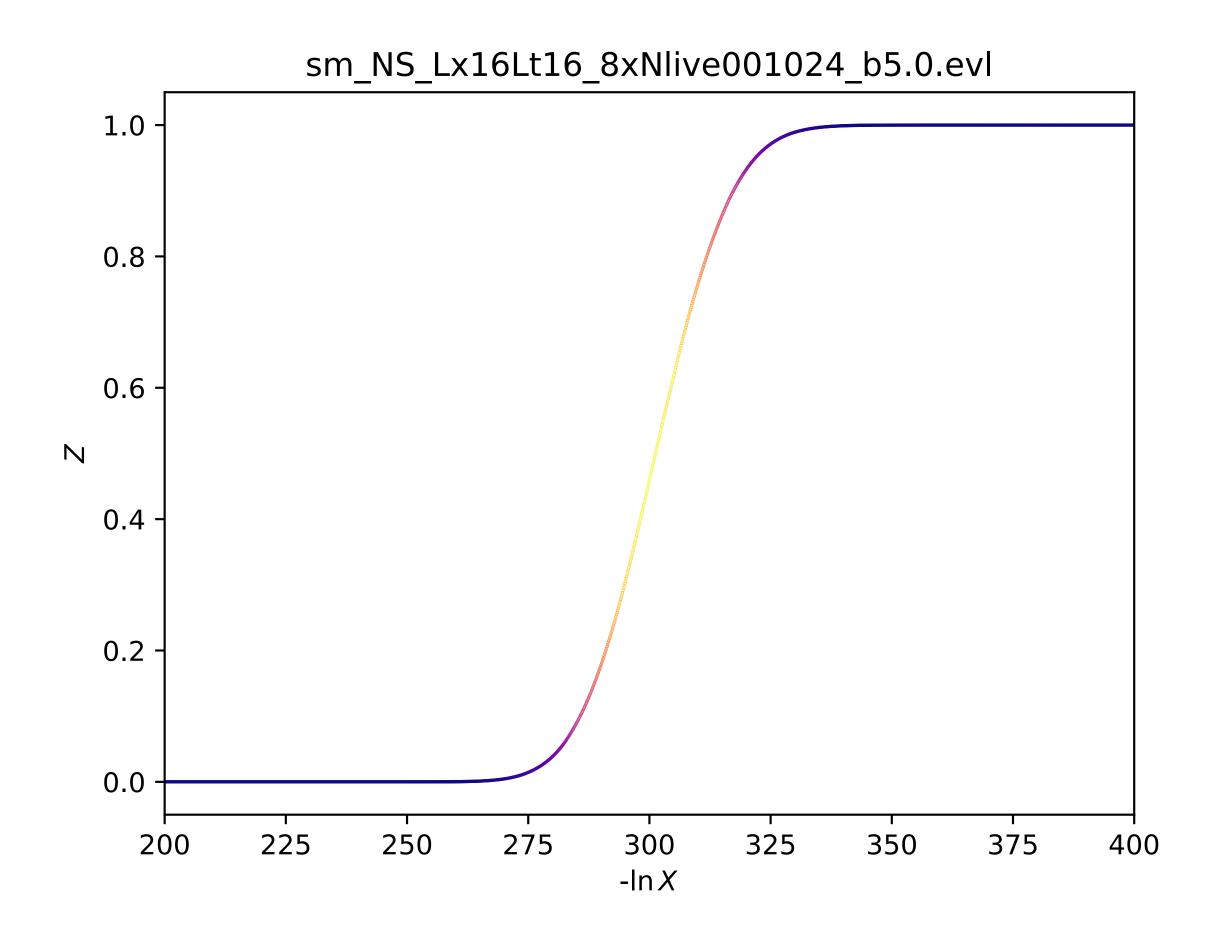
... or better $-\ln L = S$ and $\ln S$ vs $-\ln X$:

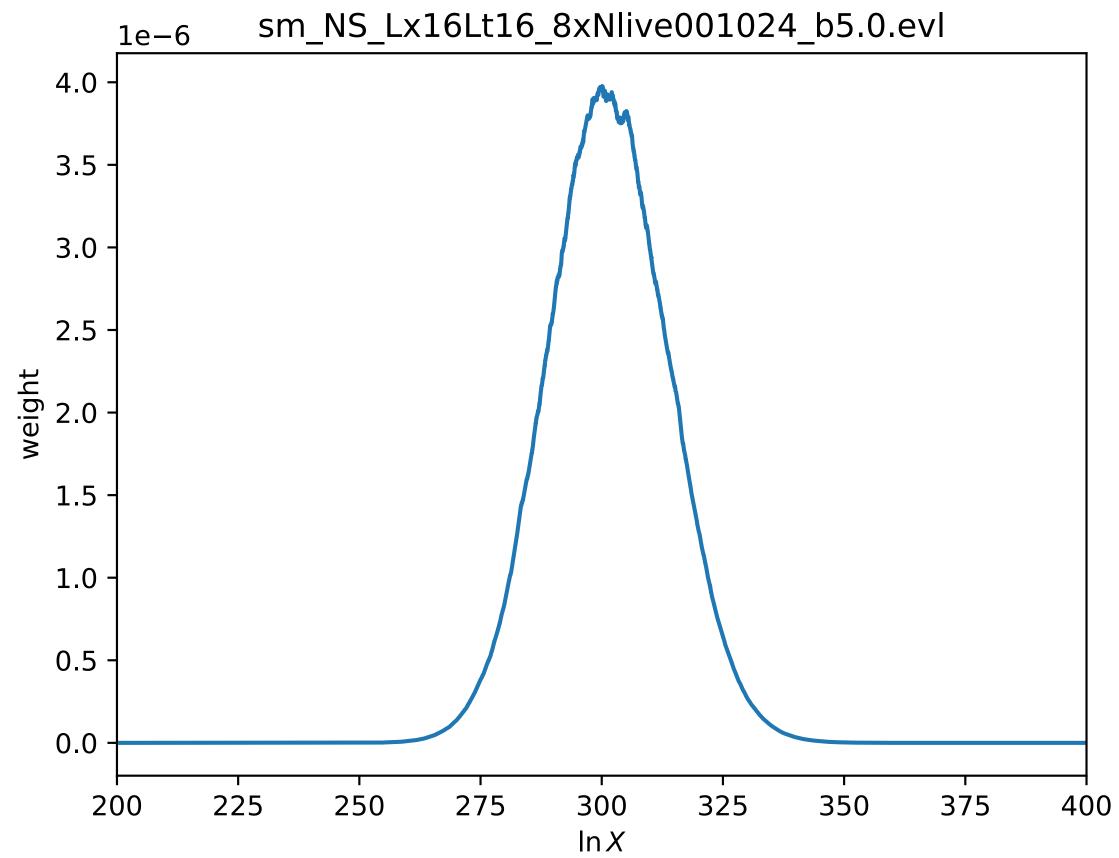


...or $\rho(E) = dX/dE$ and $\ln \rho(E) = -X d \ln X/d \ln L$:



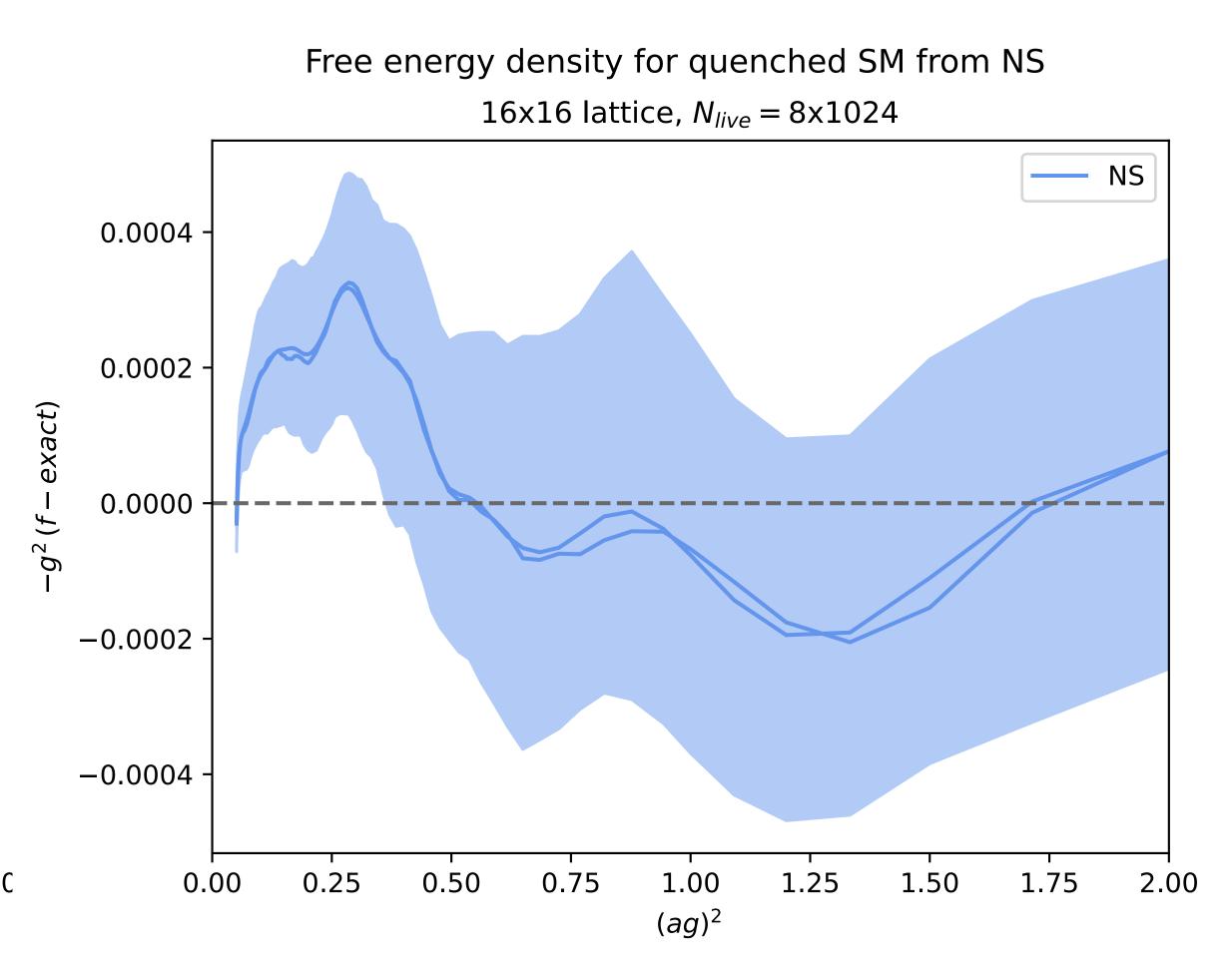
Partition function *Z* with weights at $\beta = 5.0$



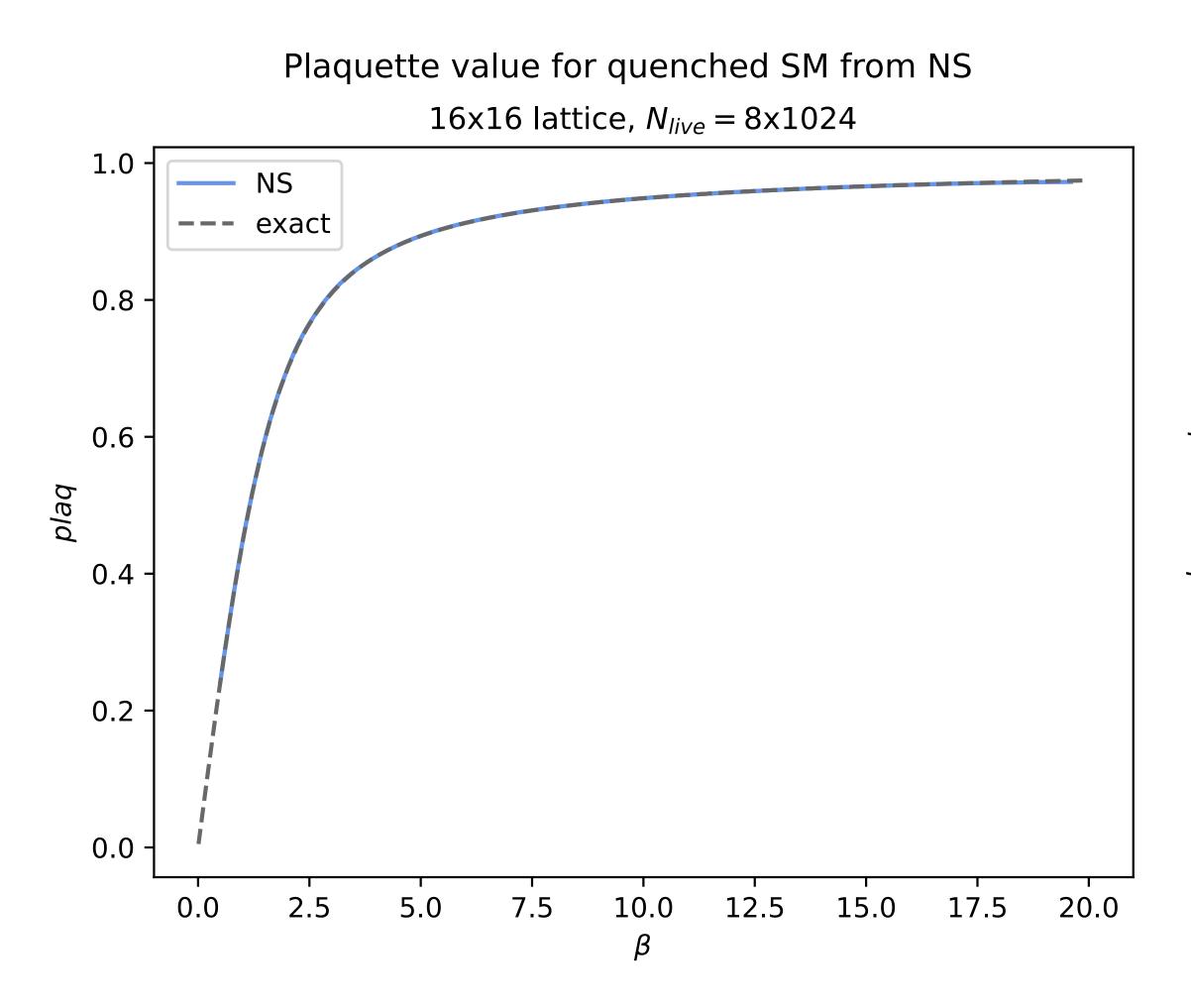


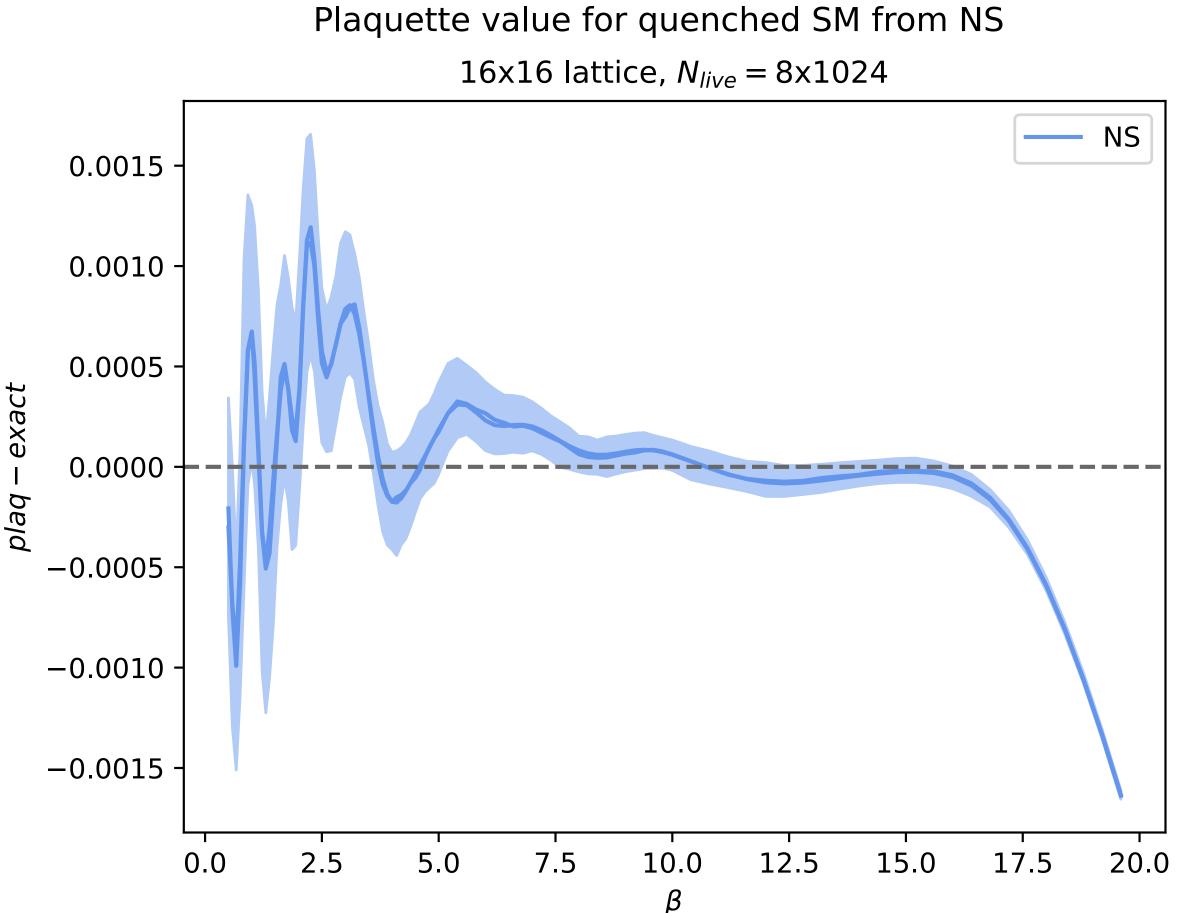
Free energy density, continuum limit

Free energy density for quenched SM from NS 16x16 lattice, $N_{live} = 8 \times 1024$ 1.0 NS --- exact 0.8 g² f $-g^2 (\ln Z)/V = 0.4$ 0.2 0.25 0.50 0.00 0.75 1.00 1.25 1.50 1.75 2.00 (*ag*)²



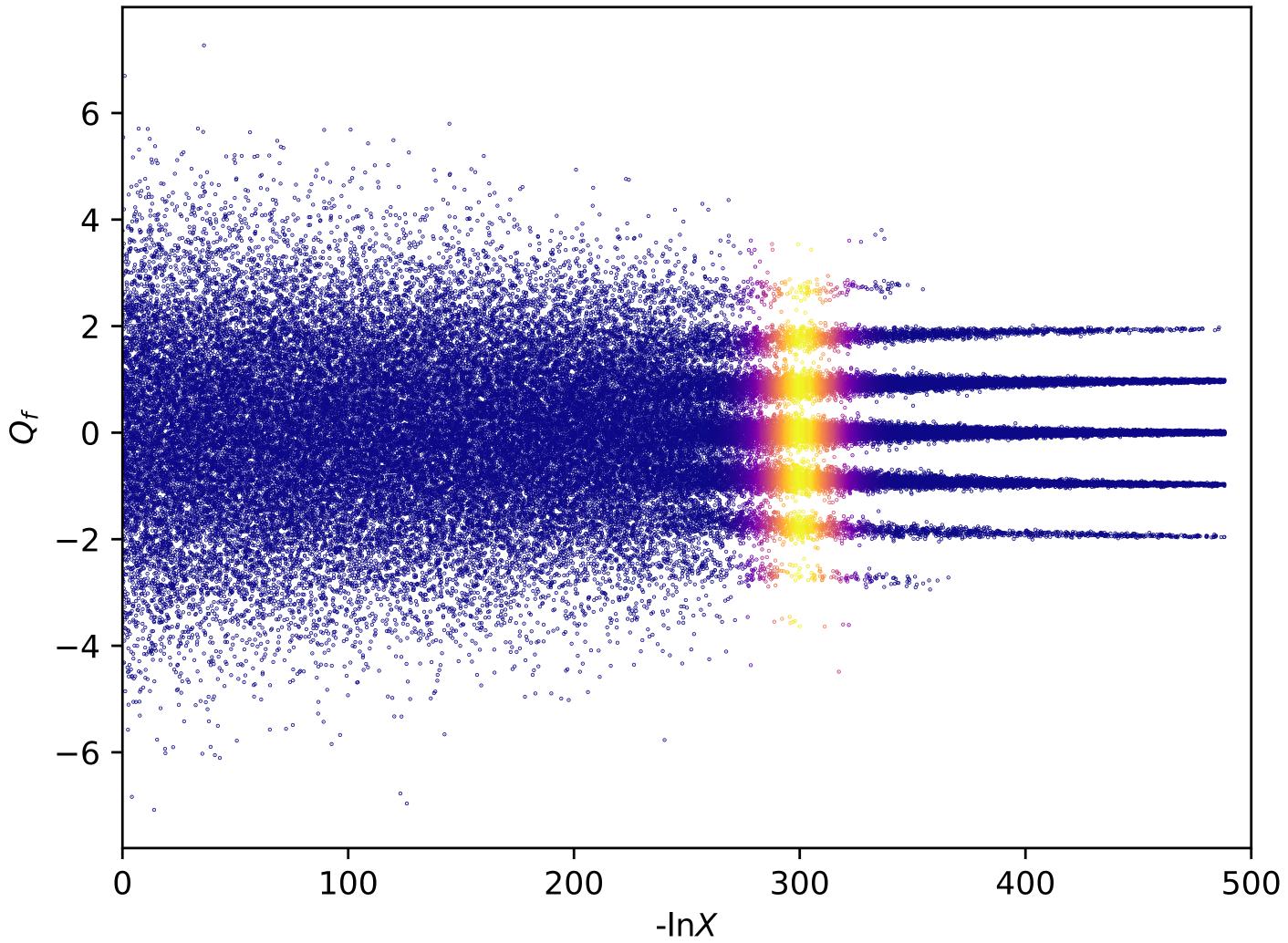
Plaquette value vs β



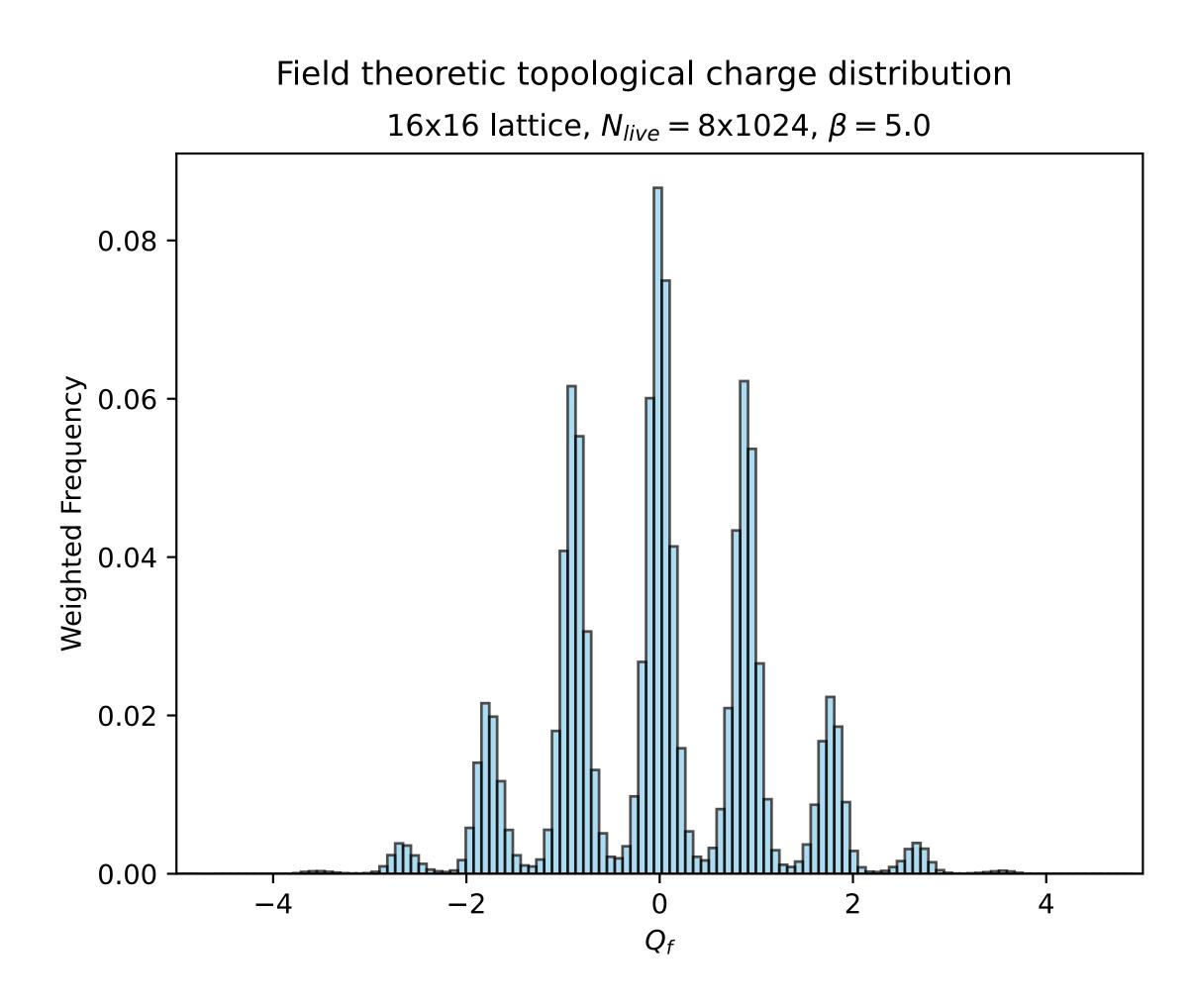


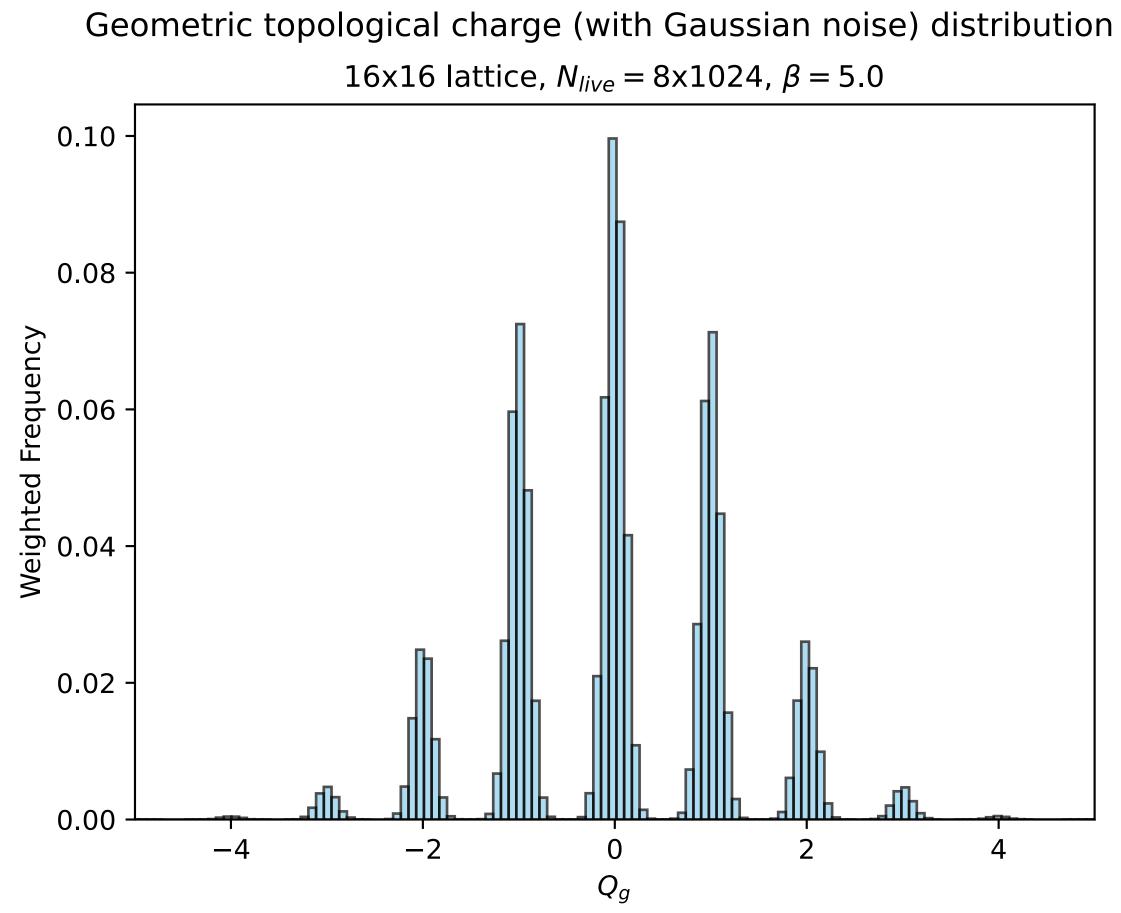
Topological charge with weights at $\beta = 5.0$

sm_NS_Lx16Lt16_8xNlive001024_b5.0.evl

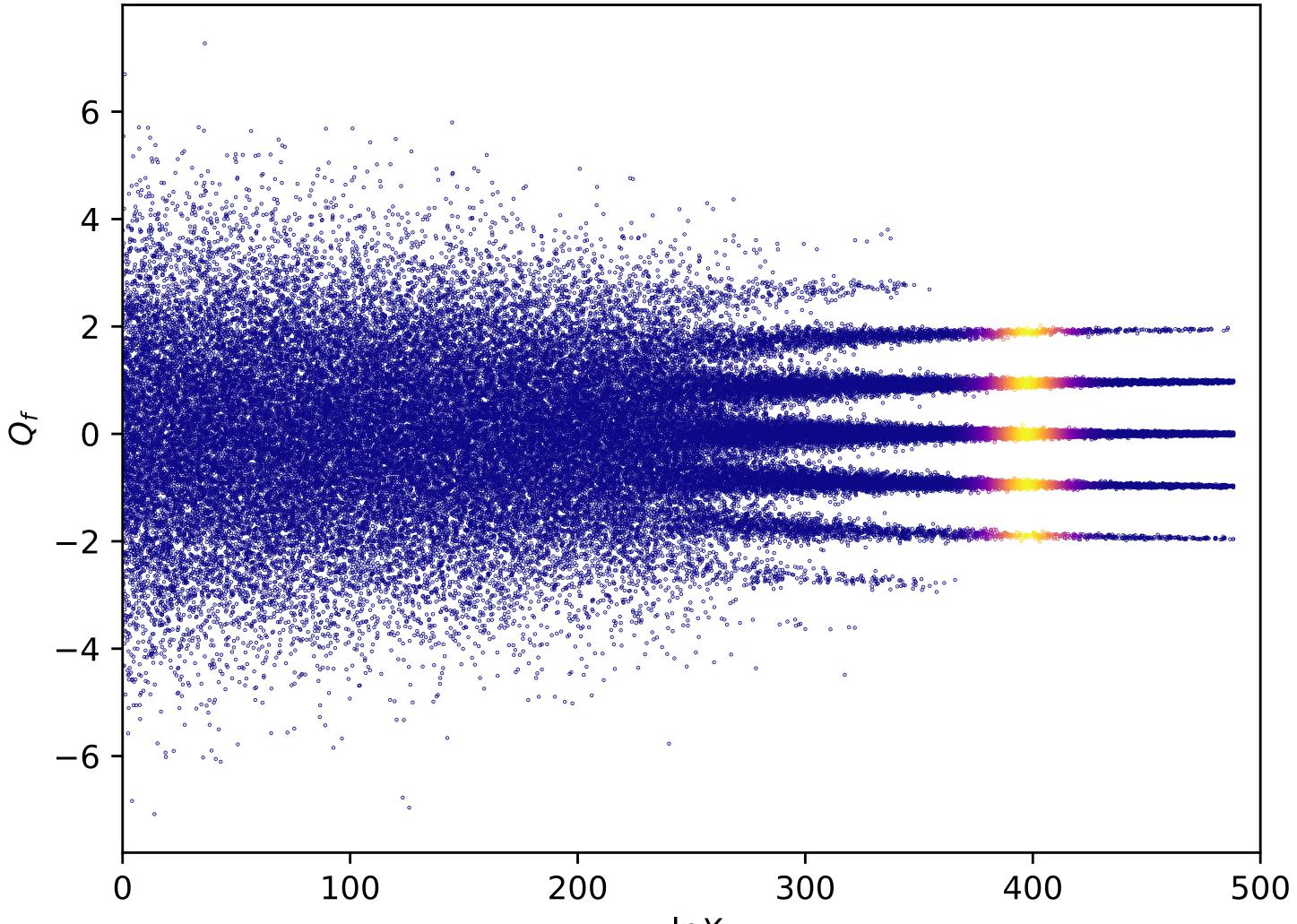


Topological charge distribution





Topological charge with weights at $\beta = 10.0$

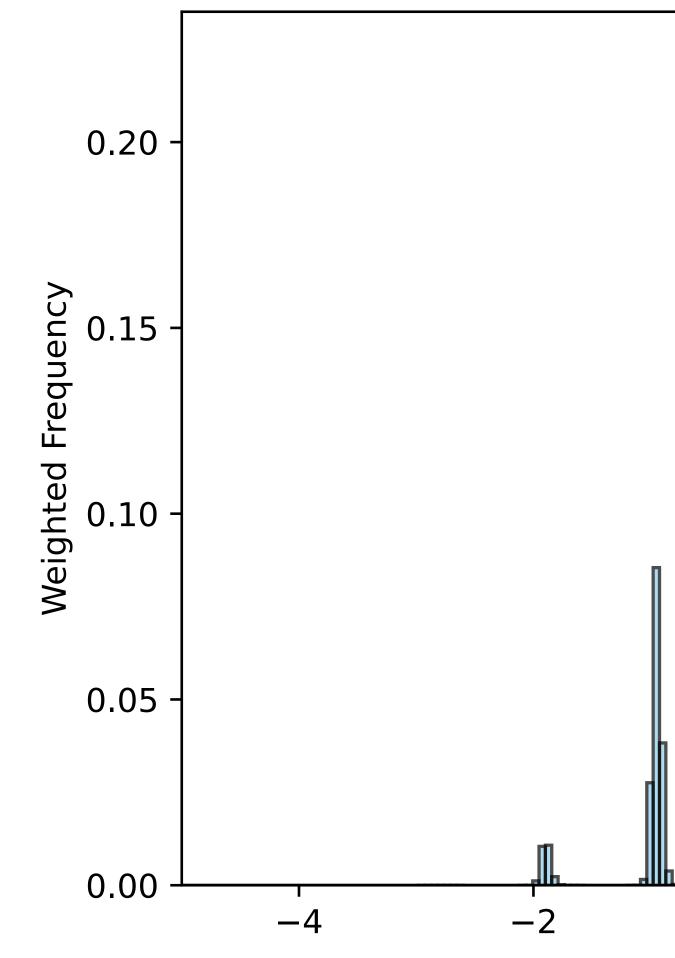


sm_NS_Lx16Lt16_Nlive001024_b10.0.evl

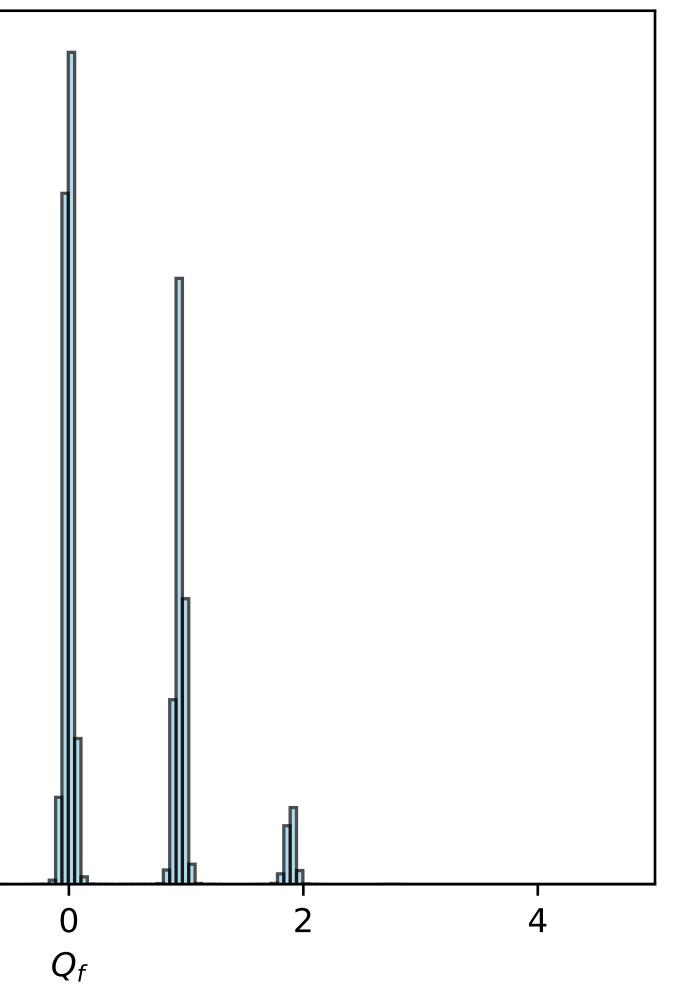
-InX

Topological charge with weights at $\beta = 10.0$

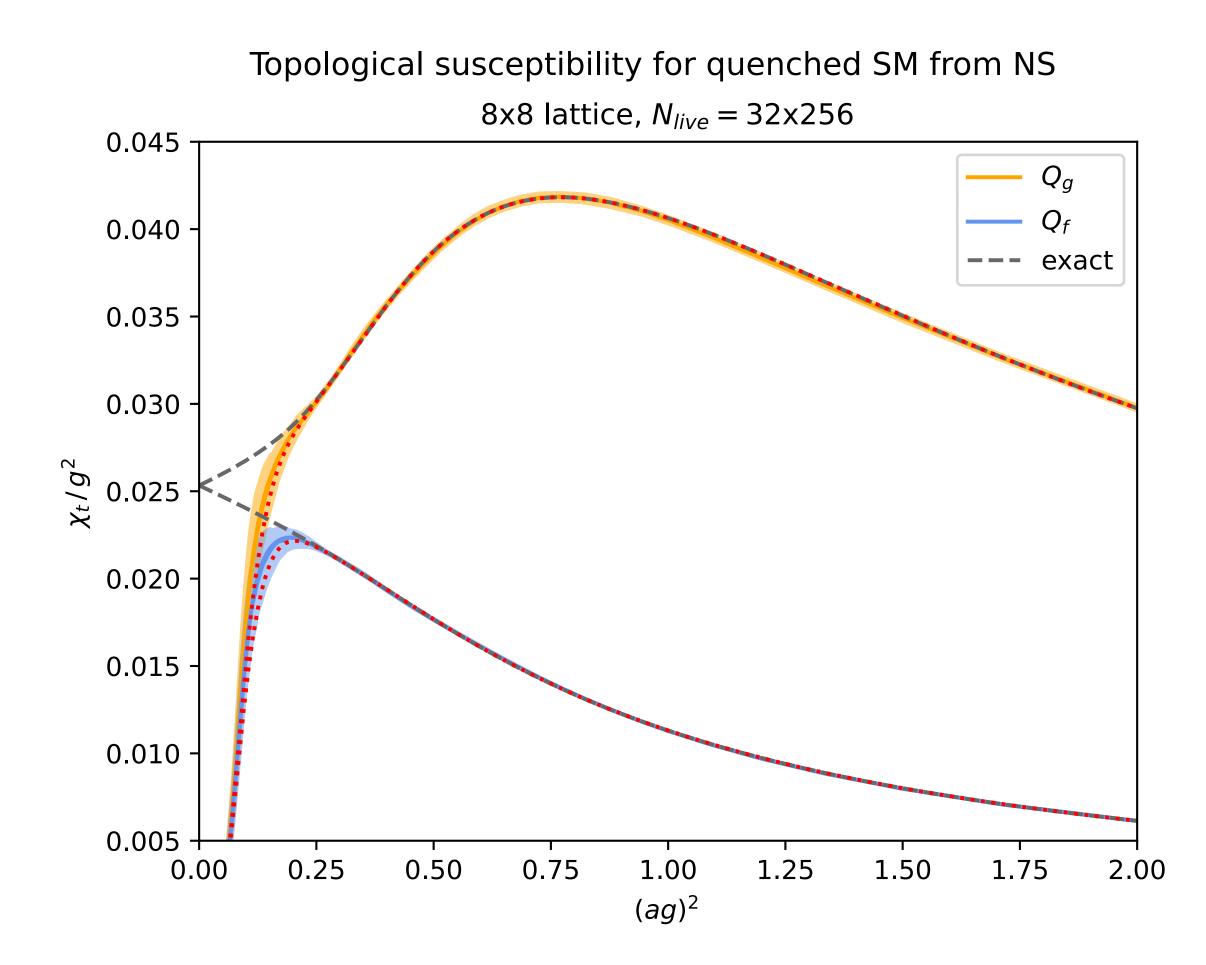
Field theoretic topological charge distribution

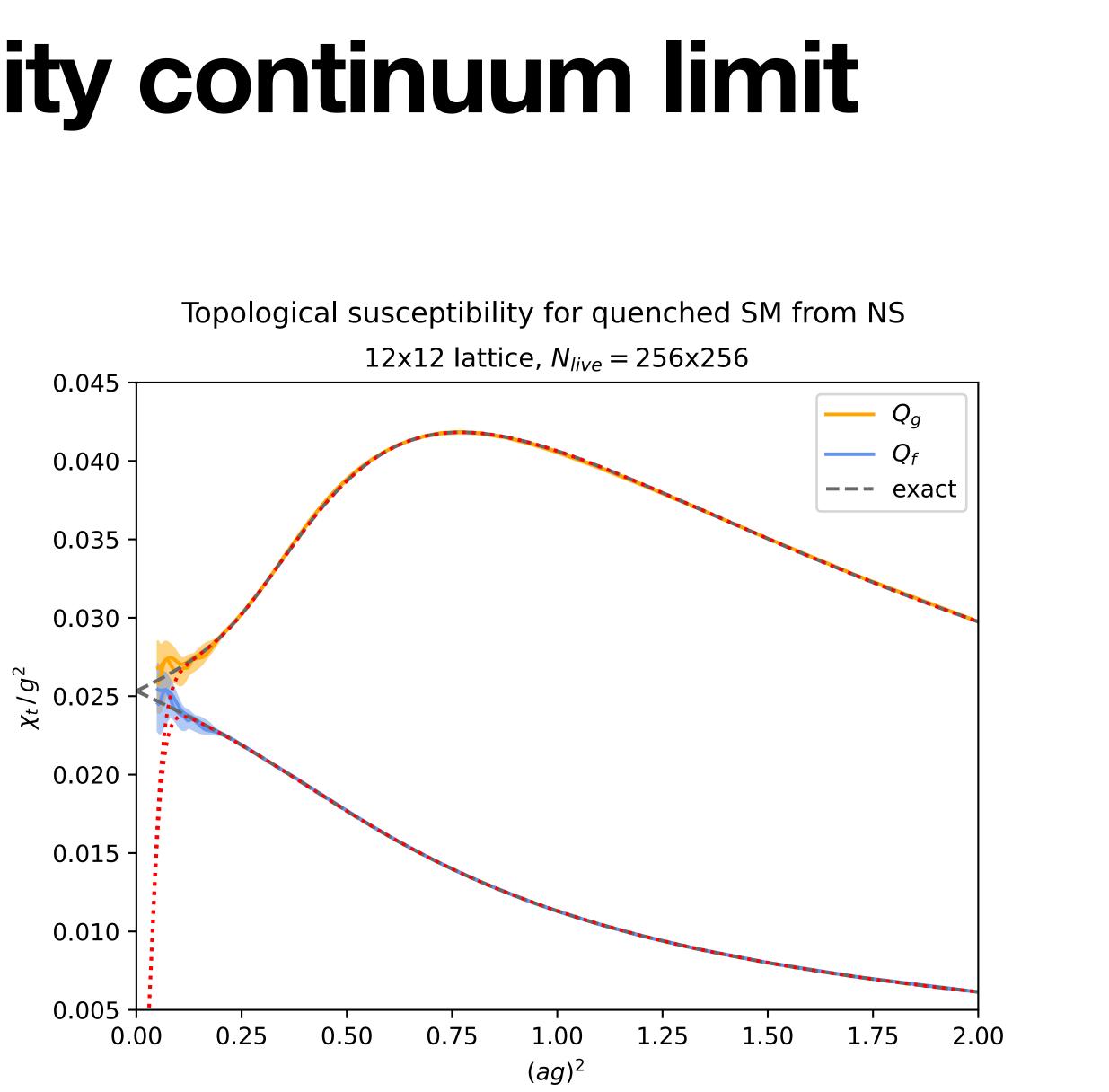


16x16 lattice, $N_{live} = 8 \times 1024$, $\beta = 10.0$



Topological susceptibility continuum limit





Conclusion & outlook

- Nested sampling has the potential to unfreeze topology
- Nested sampling parallelizes trivially
- Scaling with V needs to be investigated
- Inclusion of fermions
- Application to 1st order phase transitions

Thanks!

Bern, 20-24 January 2025 Workshop on the sign problem in QCD and beyond

http://sign25.itp.unibe.ch/

Hope to welcome you soon in Switzerland!

