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Introduction

> What is nested sampling?
» Strenghts and limitations

» Application to a U(1)
gauge theory
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Nested Sampling algorithm (part 1/4)

Origin: Bayesian statistics, calculation of the evidence p.d.f.

Evidence p.d.f.
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Origin: Bayesian statistics, calculation of the evidence p.d.f.

Evidence p.d.f.
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Multi-dimensional integral: change of variable
Naive idea:

> We draw the hyper-contours where
P(w;) = m(w;)L(w;) = const.

» The hyper-volumes separating the contours are AX;

Z =Y AX;P(X;)



Nested Sampling algorithm (part 2/4)

Multi-dimensional integral: change of variable
Rigorously:

X(L) = / (w)dew
L*>L
The evidence reads:

1
7z /0 dX LX)

Remarks:

Q
» By construction,

» [ is monotonically
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Multi-dimensional integral: change of variable
Rigorously:

X(L*) = /L*>L 7(w)dw

The evidence reads:

1
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Nested Sampling algorithm (part 2/4)

Multi-dimensional integral: change of variable
Rigorously:

X(L*) = /L*>L 7(w)dw

The evidence reads:
1
7z = / dXL(X)
0

Application to lattice field theories

» The Likelyhood L is the Boltzmann factor
» The prior is the d.o.f. measure (e.g. Haar)

» 7 is the partition function

/D¢O —pBS[¢]



Nested Sampling algorithm (part 3/4)

Steps of the algorithm
1. Draw njjve points randomly in the parameter space
2. Find the one corresponding to L* = min{L}

3. Save L*, remove from the njjye points, and draw another
one from the constrained prior:

(W) = O (L(w) > L*) (w)
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Nested Sampling algorithm (part 3/4)

Steps of the algorithm
1. Draw njjve points randomly in the parameter space
2. Find the one corresponding to L* = min{L}

3. Save L*, remove from the njjye points, and draw another
one from the constrained prior:

(W) = O (L(w) > L*) (w)
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Nested Sampling algorithm (part 4/4)

At each step we restrict the phase space:

Xi=1X;1,Xo=1

How do we estimate the volume elements?

— compression factor ¢ follows a 8 distribution:

,8(1:) ~ tnlive_1

Volume elements

1
AX; = 3 (Xiz1 — Xin1)

We can estimate it as:
> logt = (logt) = —1/niive
» t drawn from a 8 p.d.f.
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Applications to field theory

Recap on Monte Carlo integration

» Path integral is approximated by Monte Carlo (¢; sampled
according to P[¢]):

[ psPio ~ 5 Yol
bi

> Statistical error scaling as 1/ VN
Note: We sample only the values of the action S[¢].

Generic observable: Bad approximation if O[¢] level do not
overlap with P[¢]
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Recap on Monte Carlo integration

» Path integral is approximated by Monte Carlo (¢; sampled
according to P[¢]):

[ psPio ~ 5 Yol
bi

> Statistical error scaling as 1/ VN
Note: We sample only the values of the action S[¢].

Generic observable: Bad approximation if O[¢] level do not
overlap with P[¢]

Sampling configurations with NS

» Control variable: X
» Overlap can be controlled: Likelyhood VS observable



Sampling configurations with NS

7= / AXL(X) = / dSp(S)L(S)

> o(S) = dX/dS
> L(S)= e PS

Remark: p(95) is determined independently of /!



Sampling configurations with NS

7= / AXL(X) = / dSp(S)L(S)

> o(S) = dX/dS
> L(S)= e PS

Remark: p(95) is determined independently of /!

Applications

» Phase transitions
» Topological unfreezing

For further discussion, see talks by U. Wenger and G.
Kanwar
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U(1) gauge theory in 2+1 dimensions

BS =8> Re(l—Pu(x)) (1)

T pu<v
Pu(z) = Uy(2)Uy(z + )U' (z + v)UT(z)

Main features
» Confinement at all couplings (Dirac monopoles)

> Static quark potential

V(r)=a+blog(r)+oR



U(1) gauge theory in 2+1 dimensions

BS =8> Re(l—Pu(x)) (1)

T pu<v
Pu(z) = Uy(2)Uy(z + )U' (z + v)UT(z)

Main features
» Confinement at all couplings (Dirac monopoles)

> Static quark potential

V(r)=a+blog(r)+oR

Geometry considered here

Lla=4 , Tla=8 , d=3
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Gauge action through the phase space
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Total weights

7 = Zwiﬁi
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Partition function

Partition function at 5 = 4.0
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Density of states

Energy density
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Plaquette expectation value
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Comparison with Metropolis and HMC

7771 nested sampling
—&— metropolis
0.8 —@= hme

0.6 1

(P)

0.4 1

0.2 1

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5

4.0




Conclusion

» Application of NS to pure gauge U(1)241
» Compatibilility with Metropolis and HMC
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» Application of NS to pure gauge U(1)241
» Compatibilility with Metropolis and HMC

Future directions

» Anisotropic actions:

ps =2 S Re (1 - Py(2)) + 86 3 Re (1 - Py(a)
T, T,0>7
scan (8 dependence at fixed &
» U(1) in 3+ 1 dimensions: bulk phase transition
» SU(N) gauge theories



Thank you for your attention!
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