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Introduction

▶ What is nested sampling?

▶ Strenghts and limitations

▶ Application to a U(1)
gauge theory
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Nested Sampling algorithm (part 1/4)
Origin: Bayesian statistics, calculation of the evidence p.d.f.

Evidence p.d.f.

Z =

∫
DϕL[ϕ] =

∫
dnω π(ω)L(ω) ≈ lim

∆ω→0

∑
i

∆ωπ(ωi)L(ωi)

Multi-dimensional integral: change of variable

Naive idea:

▶ We draw the hyper-contours where

P (ωi) = π(ωi)L(ωi) = const.

▶ The hyper-volumes separating the contours are ∆Xi

Z ≈
∑
i

∆XiP (Xi)
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Nested Sampling algorithm (part 2/4)

Multi-dimensional integral: change of variable

Rigorously:

X(L∗) =

∫
L∗>L

π(ω)dω

The evidence reads:

Z =

∫ 1

0
dXL(X)

Remarks:

▶ By construction,

L(X = 1) = 0

▶ L is monotonically
decreasing with X
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X
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Nested Sampling algorithm (part 2/4)

Multi-dimensional integral: change of variable

Rigorously:

X(L∗) =

∫
L∗>L

π(ω)dω

The evidence reads:

Z =

∫ 1

0
dXL(X)

Application to lattice field theories

▶ The Likelyhood L is the Boltzmann factor

▶ The prior is the d.o.f. measure (e.g. Haar)

▶ Z is the partition function

⟨O⟩ =
∫

DϕO[ϕ]e−βS[ϕ]
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Nested Sampling algorithm (part 3/4)

Steps of the algorithm

1. Draw nlive points randomly in the parameter space

2. Find the one corresponding to L∗ = min{L}
3. Save L∗, remove from the nlive points, and draw another

one from the constrained prior:

π∗(ω) = Θ (L(ω) > L∗) π(ω)
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Nested Sampling algorithm (part 4/4)
At each step we restrict the phase space:

Xi = tiXi−1 , X0 = 1

How do we estimate the volume elements?
→ compression factor t follows a β distribution:

β(t) ∼ tnlive−1

Volume elements

∆Xi =
1

2
(Xi−1 −Xi+1)

We can estimate it as:

▶ log t ≈ ⟨log t⟩ = −1/nlive

▶ t drawn from a β p.d.f. −15 −10 −5 0 5 10 15
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Applications to field theory

Recap on Monte Carlo integration

▶ Path integral is approximated by Monte Carlo (ϕi sampled
according to P [ϕ]):∫

DϕP [ϕ]O[ϕ] ≈ 1

N

∑
ϕi

O[ϕi]

▶ Statistical error scaling as 1/
√
N

Note: We sample only the values of the action S[ϕ].

Generic observable: Bad approximation if O[ϕ] level do not
overlap with P [ϕ]

Sampling configurations with NS

▶ Control variable: X

▶ Overlap can be controlled: Likelyhood VS observable
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Sampling configurations with NS

Z =

∫
dXL(X) =

∫
dSρ(S)L(S)

▶ ρ(S) = dX/dS

▶ L(S) = e−βS

Remark: ρ(S) is determined independently of β!

Applications

▶ Phase transitions

▶ Topological unfreezing

For further discussion, see talks by U. Wenger and G.
Kanwar
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U(1) gauge theory in 2+1 dimensions

βS = β
∑
x

∑
µ<ν

Re (1− Pµν(x)) (1)

Pµν(x) = Uµ(x)Uν(x+ µ)U †(x+ ν)U †(x)

Main features

▶ Confinement at all couplings (Dirac monopoles)

▶ Static quark potential

V (r) = a+ b log (r) + σR

Geometry considered here

L/a = 4 , T/a = 8 , d = 3
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Gauge action through the phase space
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Total weights

Z =
∑
i

wiLi
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Partition function
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Density of states
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Plaquette expectation value
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Comparison with Metropolis and HMC
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Conclusion

▶ Application of NS to pure gauge U(1)2+1

▶ Compatibilility with Metropolis and HMC

Future directions

▶ Anisotropic actions:

βS =
β

ξ0

∑
x,i

Re (1− P0i(x)) + βξ0
∑
x,i>j

Re (1− Pij(x))

scan β dependence at fixed ξ0

▶ U(1) in 3 + 1 dimensions: bulk phase transition

▶ SU(N) gauge theories
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Thank you for your attention!
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