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Motivation
Nested Sampling is a particle Monte Carlo method 
to estimate the action vs phase space curve of a theory.


- Estimates of observables at arbitrary couplings 

- Gives access to density-of-states / partition function 

- Cheaper/easier Monte Carlo steps 

- May alleviate topological freezing 

- Easily parallelized

good for phase transitions

constrained uniform instead of weighted sampling

benefits of being a particle sampler
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Skilling (2006) “Nested sampling for general Bayesian computation”
Skilling (2004) “Nested sampling”



Estimate phase space  within contours of constant likelihood X L = e−S
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- Initialization: sample  uniformly random configurationsNlive
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Nested sampling

3

Skilling (2006) “Nested sampling for general Bayesian computation”
Skilling (2004) “Nested sampling”

(for gauge fields, total space is finite)

Configuration space



Estimate phase space  within contours of constant likelihood X L = e−S

- Initialization: sample  uniformly random configurationsNlive

- Step : record largest action ,  drop this sample,  resample uniformly within i Si S < Si

- Analysis: Compression factor   follows a Beta distribution 
bootstrap or central value to build  curve

Xi+1/Xi
L(X)
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Skilling (2006) “Nested sampling for general Bayesian computation”


t ≡ Xi+1/Xi ∈ [0,1]
p(t) ∝ tNlive−1

Skilling (2004) “Nested sampling”

(for gauge fields, total space is finite)
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Skilling (2006) “Nested sampling for general Bayesian computation”

Example  curveL(X )

Steps

log X

L(X )


t ≡ Xi+1/Xi ∈ [0,1]
p(t) ∝ tNlive−1

Skilling (2004) “Nested sampling”

(for gauge fields, total space is finite)

Configuration spaceConfiguration space Enclosed phase space X



Nested sampling
Estimate phase space  within contours of constant likelihood 


- Partition function and observables at multiple choices of  

• Relevant region of  (and ) depends on  

- Density of states 

• Universal function independent of 


- Useful to restrict sampling to important regions to improve statistics

X L = e−S

β

L X β

β
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Z(β) = ∫
1

0
dXL(X)β ⟨O(θ)⟩β =

1
Z(β) ∫

1

0
dXL(X)β⟨O⟩L(X)

Skilling (2004) “Nested sampling”
Skilling (2006) “Nested sampling for general Bayesian computation”

See previous talks by S. Romiti, U. Wenger 

ρ(S) =
dX
dS

= −
dX

d log L



SU(3) confinement transition
 
Center symmetry


Rotate temporal links on one timeslice by 



Polyakov loop is a good order param


 

Confined phase: 



Deconfined phase: 
, 

z = e2πik/3 ∈ ℤ3

|P | = 0

|P | ≠ 0 P ∝ {1,z, z2}
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Aarts, et al. 1412.0847

P ≡
1

N3
s ∑⃗

x

ℓ( ⃗x)

D. Weir (2023) 1705.01783

First-order transition in full QCD

First-order transition generating bubble dynamics in the early universe

1st order

transition

ℓ( ⃗x) ≡
1
Nc

Tr[∏
t

U0( ⃗x, t)]



SU(3) confinement transition
First order phase transition ( )


- Bulk ordering 1: Polyakov loops disordered 
Entropically favored, energetically disfavored


- Bulk ordering 2: Polyakov loops ordered 
Energetically favored, entropically disfavored


Study using thermodynamic lattices ( , ) 
with varying inverse coupling 


Various existing lattice results


- Standard MC

Nc > 2

N3
s × Nt Nt < Ns

β
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- Parallel tempering


- LLR method
Lucini, et al. 2305.07463

Borsanyi, et al. 2202.05234Kajantie, et al. (1981)

Çelik, et al. (1983)

Gottlieb, et al. (1985)

…

Small inverse coupling 

Large Euclidean time


, confined

β

|P | = 0

Large inverse coupling 

Small Euclidean time


, deconfined

β

|P | ≠ 0

Re P

Im P

Re P

Im P

Bulk ordering 1

Bulk ordering 2Wed 12:15 D. Mason

Fri 14:15 L. Virzi
- Shifted BCs



Nested sampling for SU(3)
Executed 16 fully independent “streams”


-  walkers for high-stats ,  run


-  walkers for exploratory ,  run


- Bootstrap over streams for Monte Carlo errors, compression errors still required


Constrained Monte Carlo 


- Initialize each resampling step copying another walker in stream


- Local constrained Metropolis updates mix sufficiently well


- Constrained HMC also possible

Nlive = 8192 L = 8 Lt = 4

Nlive = 256 L = 12 Lt = 4

p(U) ∝ Θ(S* − S(U))
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Betancourt (2010) 1005.0157

Skilling (2012)

Configuration space



Results: Action vs phase space

- Smooth movement through action 
values


- Nearly linear vs 


- MCMC appears to be performing well

−log X
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Results: Polyakov evolution vs beta (L=8)

All measurements of  during NS run


Color based on weight in NS integral:

P
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dXL(X)β⟨O⟩L(X)

wi ∝ (Xi+1 − Xi)e−βSi
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Results: Polyakov evolution vs beta (L=8)
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Transition at !β ≈ 5.7



Results: Polyakov order param

Challenges for HMC:


- Long autocorrelation times


- Hysteresis near transition
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Results: Polyakov order param

Challenges for HMC:


- Long autocorrelation times


- Hysteresis near transition
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⚠



Results: Polyakov histograms (L=8)
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β



Results: Density of states
Density of states:


ρ(S) =
dX
dS

= −
dX

d log L
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Microcanonical temperature:


1
t

=
d log ρ

dS

largeL →

FUTURE WORK

Lucini, et al. 2305.07463

Study with  lattices

LLR method, higher statistics

203 × 4



Comments: Monte Carlo challenges
1. Local Metropolis was much easier to tune than HMC 

- Acceptance rate remains relatively constant over whole run


- Hard constraint for HMC requires (a) costly reflection calculation or (b) higher rejection 
rate unless  tuned well


- Soft constraint for HMC possible


2. Even with many live walkers, fluctuations between 3 degenerate modes 
of broken symmetry phase are large 

- Not a problem for relevant observables, such as 


- Relevant if inequivalent modes (e.g. instanton sectors)

dτ

|P |
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See previous talk by U. Wenger 

Habeck (2015)

Betancourt (2011)



Comments: Parallelization
1. Nested sampling splits into independent “threads” 

- Each resampled  only depends on action  of deleted 


- Other walkers still useful as a resource to initialize resampling, 
but  can be deleted and resampled in parallel 
 

2. Threads can be combined post-hoc 

- Binning and bootstrapping over threads for error estimates 
even with only one stream


- Statistics can be incrementally generated as usual

U′￼ Si Ui

k < Nlive
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Higson, et al. (2018)

Configuration space

Note: In contrast to existing literature, we resample with respect to 
distinct  values per deleted walker, avoiding loss of resolutionS*



Summary / outlook
1. Nested sampling is a promising new Monte Carlo method


- Particularly useful for phase transitions


- Very different sampling strategy (uniform within contours) 

2. Early results for  confinement transition 

3. More developments to be done


- Continue to control statistical and systematic error


- Better understand volume scaling

SU(3)
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Backup slides



Nested sampling details
Estimate phase space  within contours of constant likelihood 


- Example: -dim Gaussian   
 
 

- Partition function and observables

X L = e−S

N L(θ) = e−
1

2σ2 ∑N
i=1 θ2

i
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Estimated  curveL(X )

Steps

log X

L(X )

log X

L(X )

Resampling over compression 
distribution for error estimates 
(same Monte Carlo samples)

True  curveL(X )

log X

L(X )

Z = ∫
1

0
dXL(X) ⟨O(θ)⟩ =

1
Z ∫

1

0
dXL(X)⟨O⟩L(X)



Undersampling is apparent for L=12
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|P | arg P


