Nesting sampling: SU(3) confinement transition

Gurtej Kanwar **University of Bern**

In collaboration with: Simone Romiti & Urs Wenger

UNIVERSITÄT

Lattice 2024, Liverpool, UK | Aug 2, 2024

Motivation

Nested Sampling is a particle Monte Carlo method to estimate the action vs phase space curve of a theory.

- Estimates of observables at arbitrary couplings
- Gives access to density-of-states / partition function
- Cheaper/easier Monte Carlo steps | constrained uniform instead of weighted sampling
- May alleviate topological freezing
- Easily parallelized

good for phase transitions

benefits of being a particle sampler

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian comp

	n

Estimate phase space X within contours of constant likelihood $L = e^{-S}$

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian compu

	n

Estimate phase space X within contours of constant likelihood $L = e^{-S}$

- Initialization: sample $N_{\rm live}$ uniformly random configurations (for gauge fields, total space is finite)

Configuration space

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian comp

	n

Estimate phase space X within contours of constant likelihood $L = e^{-S}$

Configuration space

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian comp

- Initialization: sample $N_{\rm live}$ uniformly random configurations (for gauge fields, total space is finite)

- Step *i*: **record** largest action S_i , **drop** this sample, **resample** uniformly within $S < S_i$

	n

Estimate phase space X within contours of constant likelihood $L = e^{-S}$

- Analysis: **Compression factor** X_{i+1}/X_i follows a Beta distribution bootstrap or central value to build L(X) curve

Configuration space

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian comp

- Initialization: sample $N_{\rm live}$ uniformly random configurations (for gauge fields, total space is finite)

- Step *i*: **record** largest action S_i , **drop** this sample, **resample** uniformly within $S < S_i$

 $t \equiv X_{i+1}/X_i \in [0,1]$ $p(t) \propto t^{N_{\text{live}}-1}$

ITAI	n″
la	/

Estimate phase space X within contours of constant likelihood $L = e^{-S}$

- Analysis: **Compression factor** X_{i+1}/X_i follows a Beta distribution bootstrap or central value to build L(X) curve

Configuration space

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian comp

- Initialization: sample $N_{\rm live}$ uniformly random configurations (for gauge fields, total space is finite)

- Step *i*: **record** largest action S_i , **drop** this sample, **resample** uniformly within $S < S_i$

 $t \equiv X_{i+1}/X_i \in [0,1]$ $p(t) \propto t^{N_{\text{live}}-1}$

ITAI	n″
la	/

Estimate phase space X within contour

- Partition function and observables at multiple choices of β

$$Z(\beta) = \int_0^1 dX L(X)^{\beta} \qquad \qquad \langle O(\theta) \rangle_{\beta} = \frac{1}{Z(\beta)} \int_0^1 dX L(X)^{\beta} \langle O \rangle_{L(X)}$$

- Relevant region of L (and X) depends on β \bullet
- Density of states $\rho(S) = \frac{dX}{dS} = -\frac{dX}{d\log L}$
 - Universal function independent of β \bullet
- Useful to restrict sampling to important regions to improve statistics

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian comp

rs of constant likelihood
$$L = e^{-S}$$

See previous talks by S. Romiti, U. Wenger

	n

SU(3) confinement transition

Center symmetry

Rotate temporal links on one timeslice by $z = e^{2\pi i k/3} \in \mathbb{Z}_3$

Polyakov loop is a good order param $\mathscr{E}(\vec{x}) \equiv \frac{1}{N_c} \operatorname{Tr}[\prod_{i} U_0(\vec{x}, t)] \longrightarrow P \equiv \frac{1}{N_s^3} \sum_{\vec{x}} \mathscr{E}(\vec{x})$

Confined phase: |P| = 0Deconfined phase: 1st order transition $|P| \neq 0, P \propto \{1,z,z^2\}$

First-order transition generating bubble dynamics in the early universe D. Weir (2023) 1705.01783

SU(3) confinement transition

First order phase transition ($N_c > 2$)

- Bulk ordering 1: Polyakov loops disordered Entropically favored, energetically disfavored
- Bulk ordering 2: Polyakov loops ordered Energetically favored, entropically disfavored

Study using thermodynamic lattices ($N_s^3 \times N_t$, $N_t < N_s$) with varying inverse coupling β

Various existing lattice results

- Standard MC Kajantie, et al. (1981) Çelik, et al. (1983) Gottlieb, et al. (1985)

. . . .

- Parallel tempering Borsanyi, et al. 2202.05234
- LLR method Lucini, et al. 2305.07463 Wed 12:15 D. Mason

Nested sampling for SU(3)

Executed 16 fully independent "streams"

- $N_{\text{live}} = 8192$ walkers for high-stats L = 8, $L_t = 4$ run
- $N_{\text{live}} = 256$ walkers for exploratory L
- Constrained Monte Carlo $p(U) \propto \Theta(X)$
 - Initialize each resampling step copying another walker in stream
 - Local constrained Metropolis updates mix sufficiently well
 - Constrained HMC also possible Betancourt (2010) 1005.0157

$$= 12, L_t = 4 \text{ run}$$

- Bootstrap over streams for Monte Carlo errors, compression errors still required

$$S^* - S(U))$$

Skilling (2012)

Configuration space

Results: Action vs phase space

- Smooth movement through action values

- Nearly linear vs $-\log X$

- MCMC appears to be performing well

$$\left\langle O(\theta) \right\rangle_{\beta} = \frac{1}{Z(\beta)} \int_{0}^{1} dX L(X)^{\beta} \left\langle O \right\rangle_{L(X)}$$
$$\bigvee_{i} \propto (X_{i+1} - X_{i}) e^{-\beta S_{i}}$$

$$\left\langle O(\theta) \right\rangle_{\beta} = \frac{1}{Z(\beta)} \int_{0}^{1} dX L(X)^{\beta} \left\langle O \right\rangle_{L(X)}$$
$$\bigvee_{i} \propto (X_{i+1} - X_{i}) e^{-\beta S_{i}}$$

$$\left\langle O(\theta) \right\rangle_{\beta} = \frac{1}{Z(\beta)} \int_{0}^{1} dX L(X)^{\beta} \left\langle O \right\rangle_{L(X)}$$
$$\bigvee_{i} \propto (X_{i+1} - X_{i}) e^{-\beta S_{i}}$$

$$\left\langle O(\theta) \right\rangle_{\beta} = \frac{1}{Z(\beta)} \int_{0}^{1} dX L(X)^{\beta} \left\langle O \right\rangle_{L(X)}$$
$$\bigvee_{i} \propto (X_{i+1} - X_{i}) e^{-\beta S_{i}}$$

$$\left\langle O(\theta) \right\rangle_{\beta} = \frac{1}{Z(\beta)} \int_{0}^{1} dX L(X)^{\beta} \left\langle O \right\rangle_{L(X)}$$
$$\bigvee_{i} \propto (X_{i+1} - X_{i}) e^{-\beta S_{i}}$$

Results: Polyakov order param

Challenges for HMC:

- Long autocorrelation times

- Hysteresis near transition

Results: Polyakov order param

Challenges for HMC:

- Long autocorrelation times

- Hysteresis near transition

Results: Polyakov histograms (L=8)

Results: Density of states

Density of states:

Microcanonical temperature:

$\frac{1}{t} = \frac{d\log\rho}{dS}$

Comments: Monte Carlo challenges

1. Local Metropolis was much easier to tune than HMC

- Acceptance rate remains relatively constant over whole run
- Hard constraint for HMC requires (a) costly reflection calculation or (b) higher rejection rate unless $d\tau$ tuned well Betancourt (2011)
- Soft constraint for HMC possible Habeck (2015)

of broken symmetry phase are large

- Not a problem for relevant observables, such as |P|
- Relevant if inequivalent modes (e.g. instanton sectors) See previous talk by U. Wenger

2. Even with many live walkers, fluctuations between 3 degenerate modes

Comments: Parallelization

1. Nested sampling splits into independent "threads" Higson, et al. (2018)

- Each resampled U' only depends on action S_i of deleted U_i
- Other walkers still useful as a resource to initialize resampling, but $k < N_{live}$ can be deleted and resampled in parallel Note: In contrast to existing literature, we resample with respect to

Note: In contrast to existing literature, we resample with respect to distinct S^* values per deleted walker, avoiding loss of resolution

2. Threads can be combined post-hoc

- Binning and bootstrapping over threads for error estimates even with only one stream
- Statistics can be incrementally generated as usual

Configuration space

Summary / outlook

- 1. Nested sampling is a promising new Monte Carlo method
 - Particularly useful for phase transitions
 - Very different sampling strategy (uniform within contours)
- 2. Early results for SU(3) confinement transition
- 3. More developments to be done
 - Continue to control statistical and systematic error
 - Better understand volume scaling

5.800 5.775 - 5.750 5.725 5.700 5.675 5.650 5.625

Backup slides

Nested sampling details

Estimate phase space X within contours of constant likelihood $L = e^{-S}$

Undersampling is apparent for L=12

