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Motivation

Nested Sampling is a particle Monte Carlo method
to estimate the action vs phase space curve of a theory.

- Estimates of observables at arbitrary couplings

- Gives access to density-of-states / partition function
- Cheaper/easier Monte Carlo steps |

- May alleviate topological freezing

- Easily parallelized
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Nested sampling

Estimate phase space X within contours of constant likelihood L = ¢ ™

- Initialization: sample V;;,.. uniformly random configurations (or gauge fields, total space is finite)
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Nested sampling

Estimate phase space X within contours of constant likelihood L = e~

S

- Initialization: sample V;;,.. uniformly random configurations (or gauge fields, total space is finite)
- Step i: record largest action Si, drop this sample, resample uniformly within $ < Sl-

- Analysis: Compression factor X, ;/X; follows a Beta distribution ;= X, ,/X €[0,1]
bootstrap or central value to build L(X) curve p(1) o tMive=l
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Nested sampling

Estimate phase space X within contours of constant likelihood L = e~
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- Initialization: sample V;;,.. uniformly random configurations (or gauge fields, total space is finite)
- Step i: record largest action Si, drop this sample, resample uniformly within $ < Sl-

- Analysis: Compression factor X, ;/X. follows a Beta distribution ;= X. /X €[0,1]
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Nested sampling

Estimate phase space X within contours of constant likelihood L = e~

S

- Partition function and observables at multiple choices of

1 1 (!
Z(p) = j dXL(X)’ (0(9»[; = Z J dXL(X)ﬁ<O>L(X)
O Bl

« Relevant region of L (and X) depends on #  See previous talks by S. Romiti, U. Wenger

dx  dX
dS  dlogL

- Density of states  p(S) =

 Universal function independent of

- Useful to restrict sampling to important regions to improve statistics



SU(3) confinement transition

Center symmetry

Rotate temporal links on one timeslice by

Polyakov loop Is a good order param

. 1 . 1 5
£(X) = N Tr[U Uyx 1)) — P = v zx: (%)

Confined phase:
|P| =0

Deconfined phase: :rztn glrt?srr]
|P|#0,P{l1,z2%}

Aarts, et al. 1412.0847
First-order transition in full QCD

N
o
o

Temperature T [MeV]

100

m
o
= Quarks and Gluons
= Fog 5
< Critical point?
3 De
) C
O,)f/}?@
» Hadrons 4
2 %
6 Q (\6/
< & >,
N (’){') o
A %
Color Super-
Neutron stars  conductor?
h § Y
1 7/
Nuclei Net Baryon Density

False vacuum
@e vacuum
O O

O

D. Weir (2023) 1705.01783



SU(3) confinement transition

First order phase transition (N, > 2)

- Bulk ordering 1: Polyakov loops disordered
favored, energetically disfavored

- Bulk ordering 2: Polyakov loops ordered
Energetically favored, disfavored

Study using thermodynamic lattices (N? X N,, N, < N,)
with varying inverse coupling f

Various existing lattice results

- Standard MC - Parallel tempering - Shifted BCs
Kajantie, et al. (1981) Borsanyi, et al. 2202.05234 Fri 14:15 L. Virzi
Celik, et al. (1983) - LLR method
Gottlieb, et al. (1985) Lucini, et al. 2305.07463

Wed 12:15 D. Mason

{ Small inverse coupling /3
! Large Euclidean time
I |P]| =0, confined

Bulk ordering 1

f " ReP

} Large inverse coupling

I Small Euclidean time

| |P| #0, deconfined
Bulk ordering 2



Nested sampling for SU(3)

Executed 16 fully independent “streams”

- Ny = 8192 walkers for high-stats L = 8, L, = 4 run

- Ny = 256 walkers for exploratory L = 12, L, = 4 run

- Bootstrap over streams for Monte Carlo errors, compression errors still required

Constrained Monte Carlo p(U) «x O(S* — S(U))

\1
‘e

- Initialize each resampling step copying another walker in stream

- Local constrained Metropolis updates mix sufficiently well

+
®

- Constrained HMC also possible Betancourt 2010)1005.0157

Skilling (2012) L& /2’/

Configuration space



Results: Action vs phase space

- Smooth movement through action
values

- Nearly linear vs —log X

- MCMC appears to be performing well
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Results: Polyakov evolution vs beta (LL.=8)
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All measurements of P during NS run

Color based on weight in NS integral.
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Results: Polyakov evolution vs beta (LL.=8)
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esults: Polyakov evolution vs beta (L=8)

ImP
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Results: Polyakov order param
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Challenges for HMC:
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Results: Polyakov order param
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Results: Polyakov histograms (L.=8)




Results: Density of states

Density of states: Microcanonical temperature:
(5) = dX dX 1 _ dlogp
P ds ~  dlogL t ds

~
A
2 = 2 = =2
—_ — — — —_

L — large

—_—
FUTURE WORK

dlog p/dS

Study with 20° X 4 lattices
LLR method, higher statistics

Lucini, et al. 2305.07463




14

Comments: Monte Carlo challenges

1. Local Metropolis was much easier to tune than HMC
- Acceptance rate remains relatively constant over whole run

- Hard constraint for HMC requires (a) costly reflection calculation or (b) higher rejection
rate unless dt tuned well Betancourt (2011)

- Soft constraint for HMC possible Habeck (2015)

2. Even with many live walkers, fluctuations between 3 degenerate modes
of broken symmetry phase are large

- Not a problem for relevant observables, such as | P |

- Relevant if inequivalent modes (e.g. instanton sectors) see previous talk by U. Wenger
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Comments: Parallelization

1. Nested sampling splits into independent “threads” Higson, et al. (2018)

- Each resampled U’ only depends on action §; of deleted U;

- Other walkers still useful as a resource to initialize resampling,
but k£ < Nj;,. can be deleted and resampled in parallel

2. Threads can be combined post-hoc

- Binning and bootstrapping over threads for error estimates
even with only one stream

- Statistics can be incrementally generated as usual

Configuration space
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Summary / outlook

1. Nested sampling is a promising new Monte Carlo method

- Particularly useful for phase transitions

- Very different sampling strategy (uniform within contours)

2. Early results for SU(3) confinement transition

3. More developments to be done
- Continue to control statistical and systematic error

- Better understand volume scaling

p(|P|)
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Backup slides




Estimate phase space X within contours of constant likelihood L = e~

1
- Example: N-dim Gaussian L(0) = e 202 <=1

70
"*60

L(X)

Estimated L(X) curve
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| |
-70 -60

- Partition function and observables
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Nested sampling details
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Undersampling is apparent for L=12
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