Nesting sampling: SU(3) confinement transition

Gurtej Kanwar University of Bern

In collaboration with: Simone Romiti & Urs Wenger **Lattice 2024, Liverpool, UK | Aug 2, 2024**

UNIVERSITÄ1

Motivation

- Estimates of observables at arbitrary couplings
- Gives access to density-of-states / partition function
- Cheaper/easier Monte Carlo steps | constrained uniform instead of weighted sampling
- May alleviate topological freezing
- Easily parallelized

Nested Sampling is a **particle Monte Carlo method** to estimate the **action vs phase space** curve of a theory.

good for phase transitions

benefits of being a particle sampler

Skilling (2006) "Nested sampling for general Bayesian computation Skilling (2004) "Nested sampling"

Estimate phase space *X* within contours of constant likelihood $L = e^{-S}$

Skilling (2006) "Nested sampling for general Bayesian computation Skilling (2004) "Nested sampling"

Skilling (2006) "Nested sampling for general Bayesian computation Skilling (2004) "Nested sampling"

Nested sampling

Estimate phase space *X* within contours of constant likelihood $L = e^{-S}$

- Initialization: sample $N_{\rm live}$ uniformly random configurations (for gauge fields, total space is finite)

Configuration space

Skilling (2006) "Nested sampling for general Bayesian computation Skilling (2004) "Nested sampling"

Nested sampling

Estimate phase space *X* within contours of constant likelihood $L = e^{-S}$

- Initialization: sample $N_{\rm live}$ uniformly random configurations
-

(for gauge fields, total space is finite)

- Step *i*: **record** largest action S_i , drop this sample, **resample** uniformly within $S < S_i$

Configuration space

Estimate phase space *X* within contours of constant likelihood $L = e^{-S}$

- Initialization: sample $N_{\rm live}$ uniformly random configurations
-
- Analysis: **Compression factor** X_{i+1}/X_i follows a Beta distribution bootstrap or central value to build $L(X)$ curve

Configuration space guaration space Enclosed phase space *X*

Skilling (2006) "Nested sampling for general Bayesian computation" Skilling (2004) "Nested sampling"

(for gauge fields, total space is finite)

- Step *i*: **record** largest action S_i , **drop** this sample, **resample** uniformly within $S < S_i$

 $t \equiv X_{i+1}/X_i \in [0,1]$ $p(t) \propto t^{N_\text{live}-1}$

Estimate phase space *X* within contours of constant likelihood $L = e^{-S}$

- Initialization: sample $N_{\rm live}$ uniformly random configurations
-
- Analysis: **Compression factor** X_{i+1}/X_i follows a Beta distribution bootstrap or central value to build $L(X)$ curve

Configuration space guaration space Enclosed phase space *X*

Skilling (2006) "Nested sampling for general Bayesian computation" Skilling (2004) "Nested sampling"

(for gauge fields, total space is finite)

- Step *i*: **record** largest action S_i , drop this sample, **resample** uniformly within $S < S_i$

 $t \equiv X_{i+1}/X_i \in [0,1]$ $p(t) \propto t^{N_\text{live}-1}$

Estimate phase space X within contours of constant likelihood

- Relevant region of L (and X) depends on β
- Density of states $\rho(S) =$ *dX dS* $=-\frac{dX}{11}$
	- Universal function independent of *β*
- Useful to restrict sampling to important regions to improve statistics

- Partition function and observables at multiple choices of *β*

Skilling (2004) "Nested sampling" Skilling (2006) "Nested sampling for general Bayesian computation

X within contours of constant likelihood
$$
L = e^{-S}
$$

$$
Z(\beta) = \int_0^1 dX L(X)^{\beta} \qquad \langle O(\theta) \rangle_{\beta} = \frac{1}{Z(\beta)} \int_0^1 dX L(X)^{\beta} \langle O \rangle_{L(X)}
$$

See previous talks by S. Romiti, U. Wenger

d log *L*

SU(3) confinement transition

Rotate temporal links on one timeslice by $z = e^{2\pi i k/3} \in \mathbb{Z}_3$

Center symmetry

Polyakov loop is a good order param *P* ≡ 1 *N*³ *s* ∑ *x* $\ell(\vec{x}) \equiv \frac{1}{N} \text{Tr}[\mathbf{I} \mid U_0(\vec{x}, t)] \longrightarrow P \equiv \frac{1}{N^3} \sum \ell(\vec{x})$ 1 $N_c^{\vphantom{\dagger}}$ Tr[∏ *t* $U_0(\vec{x}, t)$] $\overline{}$

Confined phase: Deconfined phase: $|P| \neq 0, P \propto \{1, z, z^2\}$ $|P| = 0$ 1st order transition

D. Weir (2023) 1705.01783 First-order transition generating bubble dynamics in the early universe

SU(3) confinement transition

First order phase transition ($N_c > 2$)

- **Bulk ordering 1:** Polyakov loops disordered **Entropically** favored, **energetically** disfavored
- **Bulk ordering 2:** Polyakov loops ordered **Energetically** favored, **entropically** disfavored

Study using thermodynamic lattices ($N_s^3 \times N_t$, $N_t < N_s$) with varying inverse coupling *β*

Standard MC Borsanyi, et al. 2202.05234 Kajantie, et al. (1981) Çelik, et al. (1983) Gottlieb, et al. (1985)

Various existing lattice results

- Parallel tempering
- LLR method Lucini, et al. 2305.07463

…

Nested sampling for SU(3)

Executed 16 fully independent "streams"

- $N_{\text{live}} = 8192$ walkers for high-stats $L = 8$, $L_t = 4$ run
- $N_{\text{live}} = 256$ walkers for exploratory $L = 12$, $L_t = 4$ run
-
- Constrained Monte Carlo $p(U) \propto \Theta(S^* S(U))$
	- Initialize each resampling step copying another walker in stream
	- Local constrained Metropolis updates mix sufficiently well
	- Constrained HMC also possible Betancourt (2010) 1005.0157

- Bootstrap over streams for Monte Carlo errors, compression errors still required

$$
S^* - S(U))
$$

$$
= 12, L_t = 4 \text{ run}
$$

Skilling (2012)

Configuration space

Results: Action vs phase space

- Smooth movement through action values

- Nearly linear vs - $\log X$

- MCMC appears to be performing well

$$
\langle O(\theta) \rangle_{\beta} = \frac{1}{Z(\beta)} \int_0^1 dX L(X)^{\beta} \langle O \rangle_{L(X)}
$$

$$
w_i \propto (X_{i+1} - X_i) e^{-\beta S_i}
$$

$$
\langle O(\theta) \rangle_{\beta} = \frac{1}{Z(\beta)} \int_0^1 dX L(X)^{\beta} \langle O \rangle_{L(X)}
$$

$$
w_i \propto (X_{i+1} - X_i) e^{-\beta S_i}
$$

$$
\langle O(\theta) \rangle_{\beta} = \frac{1}{Z(\beta)} \int_0^1 dX L(X)^{\beta} \langle O \rangle_{L(X)}
$$

$$
w_i \propto (X_{i+1} - X_i) e^{-\beta S_i}
$$

$$
\langle O(\theta) \rangle_{\beta} = \frac{1}{Z(\beta)} \int_0^1 dX L(X)^{\beta} \langle O \rangle_{L(X)}
$$

$$
w_i \propto (X_{i+1} - X_i) e^{-\beta S_i}
$$

$$
\langle O(\theta) \rangle_{\beta} = \frac{1}{Z(\beta)} \int_0^1 dX L(X)^{\beta} \langle O \rangle_{L(X)}
$$

$$
w_i \propto (X_{i+1} - X_i) e^{-\beta S_i}
$$

Results: Polyakov order param

Challenges for HMC:

- Long autocorrelation times

- Hysteresis near transition

Results: Polyakov order param

Challenges for HMC:

- Long autocorrelation times
- Hysteresis near transition

Results: Polyakov histograms (L=8)

Results: Density of states

Density of states:

Microcanonical temperature:

1 *t* = *d* log *ρ dS*

Comments: Monte Carlo challenges

1. Local Metropolis was much easier to tune than HMC

- Acceptance rate remains relatively constant over whole run
- Hard constraint for HMC requires (a) costly reflection calculation or (b) higher rejection rate unless $d\tau$ tuned well Betancourt (2011)
- Soft constraint for HMC possible Habeck (2015)

2. Even with many live walkers, fluctuations between 3 degenerate modes

of broken symmetry phase are large

- Not a problem for relevant observables, such as |*P*|
- Relevant if inequivalent modes (e.g. instanton sectors) See previous talk by U. Wenger

Comments: Parallelization

- Binning and bootstrapping over threads for error estimates even with only one stream
- Statistics can be incrementally generated as usual

1. Nested sampling splits into independent "threads" Higson, et al. (2018)

- Each resampled U' only depends on action S_i of deleted U_i
- Other walkers still useful as a resource to initialize resampling, but $k < N_{\mathrm{live}}$ can be deleted and resampled in parallel

2. Threads can be combined post-hoc

Configuration space

Note: In contrast to existing literature, we resample with respect to distinct *S** values per deleted walker, avoiding loss of resolution

Summary / outlook

- 1. Nested sampling is a promising new Monte Carlo method
	- Particularly useful for phase transitions
	- Very different sampling strategy (uniform within contours)
- 2. Early results for $SU(3)$ confinement transition
- 3. More developments to be done
	- Continue to control statistical and systematic error
	- Better understand volume scaling

 -5.775 -5.750 -5.725 -5.700 -5.675 -5.650 -5.625

Backup slides

Nested sampling details

Estimate phase space X within contours of constant likelihood

- Example: N -dim Gaussian $L(\theta) = e$

X within contours of constant likelihood $L = e^{-S}$

Undersampling is apparent for L=12

