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The objective of this study was to examine the methods of obtaining the
necessary auxiliary determinant term in the RMHMC Hamiltonian in order
to probe how the implementation of generating this term impacts the
effectiveness of algorithm.
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Critical Slowing Down in Hybrid Monte Carlo

o Fourier acceleration attempts to tackle the issue of critical slowing
down by modifying the mass term in the kinetic energy portion of the
HMC Hamiltonian in a way that results in the low-modes moving at
increased molecular dynamic velocities

o This is a procedure that becomes more complex when applied to QCD
due to the fact that the theory is a local gauge theory

o The Riemannian manifold HMC (RMHMC) aims to achieve Fourier
acceleration in QCD while maintaining gauge invariance by replacing
the mass term in a HMC with a function of the SU(3) gauge-covariant
Laplace operator (S. Duane and B.Pendleton Phys. Lett. B206, 101-106 (1988))
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RMHMC

@ The addition of a mass term that is dependent on the gauge links adds a
— 1 Trlog|m[U]| term, thus there also needs to be a term in the Hamiltonian
that produces a  Trlog|m[U]| to cancel out this unphysical term

@ The Hamiltonian for the RMHMC is then:
H = S[U] + Se[U] + 3 1p), wigp Pu + mhm{Ulm. + 6]
’ t L7 log m{U]term 1
here ¢ denotes the auxiliary fields and 7 denotes their corresponding momenta
@ We currently input m[U] and its inverse in the form of rational functions.

Earlier studies of this method can be found in (T. Nguyen, et al.
arXiv:2112.04556 [hep-lat] & C.Jung, et al. arXiv:2401.13226v1 [hep-lat] )

@ We are now studying this algorithm this on a 4 flavor ensemble with physical
quark masses, 1/a = 4.0 GeV, a volume of 323x64 with fermions, tuning this
mass term and it's inverse for optimized acceleration and efficiency
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Integration Scheme

@ We utilize a Sexton and Weingarten integration scheme, where the
Gauge action is separated from that of the Fermion action:
H = H"+ Sg[U]
H' = S6lU] + X, plgmipPu + 3mhm{Ulmy + 367
o This allows for Sg[U] to be used in one integrator and then the

elements of H' in another
T(TH) = T(%TH/) T(TSF[U])T(%TH/)

T(ETHI) ~

TGy S lPh P+ 5mhmlUIm + 50EDT (o (Sl

1
Tt Z[p;#w]pﬂ + o mlUlm+ S G
o

where n is a positive integer.
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hod of Determining Movement of Modes

@ When tuning the algorithm, we look at the size of change in the
Wilson flowed energy as a more practical way of studying the success
of attempted Fourier acceleration than obtaining the autocorrelation
time

o Studying the Wilson flowed energy is useful when examining how
successful the algorithms are at moving long-distance observables as
this quantity examines the theory at lengths scales on the order of

N

Sarah Fields, Norman Christ, Chulwoo JuTuning the Riemannian Manifold Hybrid Aug 2, 2024



Initial Comparison of RMHMC to HMC

The plot on the left is a plot of the average change in the Wilson-flowed energy of 12
configurations at Wilson flow time of 16 for the original optimized version of the
RMHMC vs the HMC

The right plot divides §E(16) by the run time. (the label g_x3 2 indicates an effective
RMHMC mass term)

All runs were conducted on Frontier.

5 OE(16) vs Fermion steps .o e-o BE(16)/run time vs Fermion Steps
14 | —# gx3 2 ) —#— g _x3 2fruntime
—— HMC 354 —— HMCjrun time
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o

* The RMHMC is more effective at moving long distance observables, but when you
factor in added run time, this is not yet the case
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Scaling Factor

@ By introducing a scaling factor, A\, we can adjust how much we are sampling
the auxiliary determinant term

@ Recall the Hamiltonian for the RMHMC algorithm is:

H = Se[U] + Se[U] + 3 1p), wigp Pu + mhmlUlm. + 6]
7

@ The corresponding expectation value of the gauge field momenta is:

(p) = vm

@ consequently the velocity is:
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Scaling Factor

@ We could divide the mass term by some constant, A, which would make the
Hamiltonian:

H = Sc[U] + Se[U] + %Z[p}: ﬁ Py + ﬂt#wy + ¢2]
i

@ Following the same logic as before, would have the expectation value of
momentum and velocity:

(p) ~ V2 (v) ~ 2

@ Dividing by the scaling factor in the input mass term results in the velocity
to increase by a factor of v/A

@ To account for this, the input trajectory length can be multiplied by a factor

of % This ensures trajectories of equivalent lengths are being studied
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Scaling Factor

@ The mass term associated with the auxiliary field is the inverse of that
of the gauge field:
va ~\/m = va ‘/TT
@ This effect is not compensated by the manual change in the trajectory
length

= The scale factor A\ has the effect of changing the amount of sampling
that is done on auxiliary determinant

= When X is greater than 1, the velocity of the auxiliary field has been
reduced — the amount of sampling of this term is also reduced

= By introducing a scaling factor, one can tune the algorithm by
determining how much the auxiliary determinant is being sampled
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Scaling Factor Results

Data for various scaling factors, A, applied to g _x3 2

16 le=5 BE(16)/dH vs Fermion steps
[ g x3_2/dH
14 g x3_2 h=4/dH
—== g x3_2_h=25/dH
12 4 wde g3 2 A=01fdH
_ 10
5
VR
0.6 4
044
024
T T T T
2 4 & 8 10

Fermion steps

Rational Function Trajectory | FS 1 §E(16) FS 2 §E(16) FS 3 6E(16) FS 4 5E(16) 6H
Length

g_x3_2 0.12 3.4004E-06 7.0530E-06 8.1306E-06 9.2075E-06 0.6554

g x3_ 2 A=4 0.06 3.3970E-06 7.0530E-06 8.1236E-06 9.1965E-06 0.6566

g x3_2 A=.25 0.24 3.3995E-06 7.0584E-06 8.1638E-06 9.2315E-06 0.6507

g x3 2 A=.01 1.20 3.1356E-06 7.4133E-06 8.9443E-06 1.0271E-05 0.7724

* The scaling factor has little to no impact on §E(16)
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Auxiliary Term

@ Since the auxiliary terms have been shown to have little to no impact
on the movement of long-distance observables, we can make the
auxiliary field non-dynamical

o This theoretically would reduce the run time of the algorithm, making
the RMHMC more efficient
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Results

Results of the change in Wilson-flowed energy of 12 configurations at Wilson time of 16
for the original optimized version of the RMHMC and the RMHMC with the
non-dynamical auxiliary field approach.

s OE(16) vs Fermion steps 5o 2= BE(16)/run time vs Fermion Steps
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% The run with the auxiliary fields non-dynamical was as effective as the original
within error while reducing the run time by ~ 10%
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Polynomial Input

Now that we are treating the auxiliary field as pseudo-fermion field, we can
benefit from simplifying the input of m[U] or 1/m[U] to a polynomial
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Preliminary Results

Results of the change in Wilson-flowed energy at Wilson time of 16 for the original
optimized version of the RMHMC, and newer version of the RMHMC with the a
polynomial M[U]

s OE(16) vs Fermion steps g 29 GE(16)/run time vs Fermion Steps
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* A polynomial mass function reduces run time significantly

* The particular choice of function was not as effective at changing long distance
observables as the original function, but he improved efficiency is promising.
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Updated comparison of RMHMC to HMC

o le=9 8E(16)/run time vs Fermion steps

—+— HMC/ run time
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Summary and Outlook

@ The RMHMC is effective at increasing the change of long-distance
observables.

o Reducing the sampling of the auxiliary term showed little to no impact
on long distance observables.

o This observation was utilized by making the auxiliary fields
non-dynamical.

o Having the auxiliary terms non-dynamical had similar effects on
moving long-distance observables as previous tests while reducing the
run time.

o We can utilize this result to simplify the form of the input mass
function or it's inverse to further improve efficiency of the algorithm.

Sarah Fields, Norman Christ, Chulwoo JuTuning the Riemannian Manifold Hybrid Aug 2, 2024



Back Up Slides
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RMHMC RMHMC HMC

with Aux without Aux
FS 15E(16) | 3.4022¢-06 3.4618e-06 2.4859¢e-06
FS 2 §E(16) | 7.0573e-06 7.0005e-06 4.6193e-06
FS 3 §E(16) | 8.1301e-06 8.1739¢-06 6.3036e-06
FS 4 §E(16) | 9.2046e-06 6.7352e-06 7.1134e-06
oH 0.7760 0.9129 0.5025
Total RT (s) | 10314.4915 9392.5951 3205.1259

o All trajectory runs were conducted on Frontier.
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RMHMC with | RMHMC HMC

Polynomial M | without Aux
FS 1 5E(16) | 2.8432e-06 3.4618e-06 2.4859e-06
FS 2 §E(16) | 3.9159e-06 7.0005e-06 | 4.6193e-06
FS 3 JE(16) | 5.0109e-06 8.1739e-06 6.3036e-06
FS 4 §E(16) | 5.9949e-06 6.7352e-06 | 7.1134e-06
oH 0.2992 0.9129 0.5025
Total RT (s) | 3780.9657 9392.5951 3295.1259

All trajectory runs were conducted on Frontier.
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Weingarten Terms

Rational Func- | Inner FS16E(16) | FS24E(16) | FS34E(16) | FS44E(16) | 6H Run Time
tion SW

terms
g x3_ 2 12 3.4331E-06 | 7.1149E-06 | 7.9879E-06 | 8.9286E-06 | 0.6384 | 12146.8197
g x3_2 SW 6|6 3.4330E-06 | 7.1136E-06 | 7.9880E-06 | 8.9296E-06 | 1.3656 | 7378.6452

Figure: The average difference in Wilson-flowed energy at Wilson time of 16 for
each of the four fermion steps that make up a full RMHMC trajectory, average
0H, and run time forg x3 2and g x3 2 SW 6. Here FS is used to denote
fermion step. Both runs were done in double precision. All averages were
gathered from 10, (340-430) configurations. Here it can be seen that the reduced
SW term has little to no impact on 6E(16), reduced run time, but consequently
increases §H.
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Iteration Break Downs

Mixed Double
MD time 15790.23517 | 10312.08841
CG iteration 165780 165780
CG time 1652.364304 | 1646.893077
Lap iteration 3183139 1869438
Lap time 10786.26581 | 6749.164435

This demonstrates that the Conjugate Gradient iterations per second is 100.35 for mixed
and for double is 100.66. The Lapalce iterations per second is 295.12 for mixed and for
double is 276.99.

Auxiliary Term On | Auxiliary Term Off
MD time 10312.08841 9389.957807
CG iteration 165780 163207
CG time 1646.893077 1624.57916
Lap iteration 1869438 1648571.364
Lap time 6749.164435 5956.673893

The Conjugate Gradient iterations per second is 100.66 for with the auxiliary term is on
and without it 100.46. The Laplace iterations per second is 276.76 for on and for off is
276.99.
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Scaling Mixed Precision

Rational Function Trajectory | FS 10E(16) | FS26E(16) | FS3 6E(16) | FS44E(16) | 6H
Length

g_x3_2 0.120 3.4021E-06 | 7.0574E-06 | 8.1303E-06 | 9.2046E-06 | 1.6878

g_x3_2_ scaled .50 | 0.240 3.3984E-06 | 7.0612E-06 | 8.1651E-06 | 9.2339E-06 | 5.0289

g x3_2 scaled 10 | 0.012 3.3981E-06 | 7.0536E-06 | 8.1191E-06 | 9.1971E-05 | 0.3341

Figure: The average difference in Wilson-flowed energy at Wilson time of 16 for
each of the four fermion steps that make up a full RMHMC step, trajectory
length, and average dH for g x3 2, g x3 2 scaled 2,g x3 2 scaled .50,
and g x3_ 2 scaled 10. Here FS is used to denote fermion step. Here all data
was generated from the newer version of the RMHMC with mixed precision. All
averages were gathered from 11, (340-440) configurations. Here it can be seen
that the scaling factor has little to no impact on E(16), yet a notable impact on
in 6H and this difference grows as the scaling factor grows.
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Topological Charge

Sarah Fields, Norman Christ, Chulwoo JuTuning the Riemannian Manifold Hybrid

Config | FS 1 Topo- | FS 2 Topo- | FS 3 Topo- | FS 4 Topo-
f logical logical logical logical
Charge Charge Charge Charge
340 4. 36E-07 1.08E-06 1.77E-06 2.24E-06
350 3.25E-07 9.95E-01 9.95E-01 9.91E-01
360 2.84E-06 6.72E-06 1.06E-05 1.47E-05
370 2.43E-01 2.43E-01 2.43E-01 2.43E-01
380 1.03E-07 9.86E-07 2.25E-06 3.82E-06
390 2.06E-06 3.53E-06 4.19E-06 3.63E-06
400 7.27E-04 1.60E-03 2.40E-03 2.72E-03
410 2.70E-06 4.68E-06 6.14E-06 7.32E-06
420 1.27E-06 1.20E-06 2.00E-07 2.55E-06
430 2.88E-06 4.11E-06 3.83E-06 2.01E-06
440 1.99E-06 3.21E-06 3.89E-06 4.11E-06
450 1.34E-06 2.43E-06 2.63E-06 2.89E-06
460 1.60E-06 2.75E-06 3.24E-06 2.89E-06
470 7.97E-08 5.40E-07 1.28E-06 1.38E-06
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