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Daily work: sampling from µ̃ onM using algorithm P.

Our aim: conditions on P =⇒ converge exponentially towards µ̃.

Assuming sampling spaceM is a complete Riemannian manifold, we prove

IfM is compact, HMC converges.

IfM is non-compact, after mixed with a radial Metropolis(provided there is radial
direction), HMC converges.
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2 Convergence proof for HMC
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Convergence of Markov chains
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What do we mean by convergence?

Banach fixed-point theorem

If (X , d) is a complete metric space and the transition P : X → X is a contraction mapping,

d(Pµ,Pν) ≤ a · d(µ, ν)

for some a ∈ [0, 1) and ∀µ, ν ∈ X , then there is a unique fixed-point µ̃ such that
limn→∞ Pnµ = µ̃ ∀µ ∈ X .

So one has to prepare

a metric on the space of probability measures.

show P is a contraction on it.
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Compact spaces: Doeblin’s condition
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A sufficient condition for convergence on compact spaces is

Doeblin’s condition

If ∃α ∈ (0, 1) and a probability measure ν such that

P(x , ·) ≥ αν(·) ∀x ∈M

then the Markov chain converges geometrically.

Total Variation (TV) metric:

d(µ, ν) ≡ ∥µ− ν∥TV = sup
A∈B(M)

|µ(A)− ν(A)| .

It may be shown that ∀µ, ν ∈ X :

∥Pµ− Pν∥TV ≤ (1− α) · ∥µ− ν∥TV
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Harris’ Theorem
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Not able to construct Doeblin’s condition on the whole non-compactM since

1 =

∫
M
P(x ,M) · µV (dx) ≥ αν(M) · µV (M)

and the volume µV (M) can be infinite.
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Harris’ theorem
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Hairer and Mattingly gave an elegant simplification of Harris theorem1.

Geometric Drift Condition (GDC)

There is a Lyapunov function
L :M→ [0,∞), γ ∈ (0, 1), and K ≥ 0
such that ∀x ∈M we have

(PL)(x) ≤ γ · L(x) + K .

Doeblin’s Condition (DC)

∃α ∈ (0, 1), a probability measure ν, and
a small set C = {x ∈M : L(x) ≤ R}

where R >
2K

1− γ
, such that

inf
x∈C
P(x , ·) ≥ αν(·).

if γ ∈ [0, 1], we say weak GDC. use a more simple condition:
inf

x ,y∈C
P(x → y) ≥ α.

1Martin Hairer and Jonathan C. Mattingly (2011). “Yet Another Look at Harris’ Ergodic Theorem for
Markov Chains”. In: Seminar on Stochastic Analysis, Random Fields and Applications VI. ed. by
Robert Dalang, Marco Dozzi, and Francesco Russo. Basel: Springer, pp. 109–117. isbn: 978-3-0348-0021-1.
doi: https://doi.org/10.48550/arXiv.0810.2777.Xinhao (Edinburgh) Geometric Convergence of HMC Friday, 2 August 2024 7 / 32
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1 Background: Harris’ theorem

2 Convergence proof for HMC
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Introduction
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HMC assigns each degree of freedom a fictitious momentum:

q ∈M −−−−→ (q, p) ∈ T ∗M

The cotangent bundle T ∗M admits a symplectic structure because

∃ Liouville one-form: ∃θ ∈ Λ1(T ∗M) with β∗θ = β, ∀β ∈ Λ1(M).

∃ a closed, non-singular fundamental two-form ω:

ω ≡ −dθ, dω = 0, detω ̸= 0.

Then for every smooth function F , there is a unique Hamiltonian vector field F̂ such that

ω(F̂ , ·) = −dF .

Trajectories, denoted as σF̂ , are local flows tangential to F̂ .
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Doeblin’s condition for probability density
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Probability Densities

A probability density is usually just the Radon–Nikodym derivative of the transition probability,
but sometimes this needs to be extended to a distribution (generalized function).

Measure of T ∗M is the volume form of the phase space:

Vol ≡ ωn.

Define probability densities:

P(x → y) ≡ dP(x , ·)
dVol

(y), Q(y) ≡ dν

dVol
(y).

Then ∀x , y ∈ C:

P(x → y) ≥ c > 0 −→←−\ P(x → y) ≥ αQ(y)⇔ P(x , ·) ≥ αν.
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Doeblin’s condition for probability density
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It is convenient to use on T ∗M andM that are invariant under transition:

symplectomorphisms (canonical transformations) preserve the volume form:

LV̂ ,T̂ Vol = 0.

T̂ is an isometry: Riemannian measure µg is preserved.

As a result, the extended target distribution∫
Vol

e−H =

∫
Vol

e−(V+T )

has well-defined state density e−H , and after integration over momentum:∫
Vol

e−(T+V ) ⇒
∫
µg

e−V

also has well-defined e−V .
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Algorithm
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The algorithm we use:

1 (Partial) Momentum Refreshment

SMR : (q, p) 7→ (q′, p′) = p · cos θ + η · sin θ, η ∼ µG .

2 Molecular Dynamics Monte Carlo (SMDMC) Which is made up of

A Hamiltonian trajectory
SMD : (q, p) 7→ (q′, p′) = σ(t).

A Metropolis accept/reject test SMC.
A momentum flip if rejected:

SFlip : (q, p) 7→ (q,−p).
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Algorithm
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We use the Leapfrog (Verlet, Störmer) integrator SLF to approximate Hamiltonian dynamics
SMD; given a step size τ , it is

SMD = SLF ≡ σV̂

(τ
2

)
◦ σT̂ (τ) ◦ σV̂

(τ
2

)
.

Kinetic energy T is naturally defined by the inverse Riemannian metric

T (q, p) ≡ 1

2
g−1
q (p, p).

Thus the Gibbs sampler of SMR is the distribution

µG (A) ∝
∫
A
e−T (q,η) dη.
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Leapfrog on the cotangent bundle
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Levi-Civita connection ∇:

∇g = 0.

∇XY −∇YX − [X ,Y ] = 0, ∀X ,Y ∈ X(M).

∇ is an Ehresmann connection:
TxT

∗M = Vx ⊕Hx .

Denote ♯ the musical isomorphism of g , we have:

V̂ is vertical:

V̂ = (0,−dV ) σV̂ (t) : (q, p) 7→ (q, p − t · dVq).

T̂ is horizontal:

T̂ = (p♯, 0) σT̂ (t) : (q, p) 7→
(
expq(t · p♯), p′

)
, T (x) = T (x ′).
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Doeblin’s condition for HMC
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So, An update is:

(q0, p0)
SMR−→(q0, p1)

σV̂−→(q0, p2)
σT̂−→(q1, p3)

σV̂−→(q1, p4)
SMR−→(q1, p5)

The step SMC ◦ SFlip after (q1, p4) is not shown explicitly.

small set

The Lyapunov function is chosen to be Hamiltonian: L ≡ H.
The small set is:

C = {x ∈ T ∗M
∣∣H(x) ≤ VR}
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Doeblin’s condition for HMC
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1 We have

|V (q1)− V (q0)| ≤ VR ⇒ |q1 − q0| ≤ R.
|dVq0 | ≤ M1

2 σT̂ exists:
By Hopf-Rinow theorem, there is a geodesic connecting any two points onM, σT̂ is the
unique horizontal lift of it.

3 T (q0, p2) = T (q1, p3) is bounded, since

T = d(q0, q1)
2/2τ2

4 p2 = p0 cos θ + η sin θ − τ
2dVq0 ⇒ T (η) and e−T (η) bounded.

5 As a result, the probability density is bounded by

P(x → y) ≥ c = exp

{
−2
sin2 θ

[
R2

2τ2
+ cos2 θVR +

τ2

4
M2

1

]}
· e−2VR ,

the multiplication of probability densities from two SMR and a Metropolis test.

Xinhao (Edinburgh) Geometric Convergence of HMC Friday, 2 August 2024 17 / 32



Leapfrog integrator
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Reasons for using a single Leapfrog step:

When C disconnected, σT̂ can join state
between subsets.
This will not work if use exact integrator σĤ .

A trajectory consists of a random number of
Leapfrog steps, and there is a positive
probability of taking a single step.

This depends on ability of the algorithm to
cross a potential barrier, HMC was not
designed to deal with such barriers.
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Geometric drift condition: CompactM
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No need for Harris’ theorem if total momentum refreshment.

However in general we must consider the non-compact phase space T ∗M as the state
space; e.g., when partial momentum refreshment is used.

Lyapunov function L

Choose the Lyapunov function to be the Hamiltonian, L = H. In general it is always minus the
logarithm of the target distribution.

The strategy of our proof is

1 Momentum Refreshment satisfies the strong GDC.

2 Molecular Dynamics satisfies weak GDC.

3 Thus combining them HMC satisfies strong GDC on compactM.
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Generalized Drift Condition for compactM

T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

H

M is compact and V is smooth, so must be bounded V ≤ Vmax.

1 Partial momentum refreshment (PMR) satisfies the strong GDC

(PMRH)(q, p) = ⟨H(q, p)⟩η

∝
∫
Ω

[
T (q,SMR(p)) + V (q)

]
e−T (η) dη

= V (q) + (cos θ)2T (q, p) + (sin θ)2

= (cos θ)2H(q, p) + (sin θ)2(1 + V (q))

≤ (cos θ)2H(q, p) + (sin θ)2(1 + Vmax).

This also works for pseudofermions, since they are generated using a Gibbs sampler (heatbath)
from a distribution with exponentially small tails.
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Generalized Drift Condition for compactM
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2 PMD satisfies weak GDC.

Weak Generalized Drift Condition for the Metropolis Algorithm

In general any Metropolis algorithm satisfies the weak GDC with minus log probability as the
Lyapunov function.

Let x̃ = (q̃, p̃) = SMD(x), then the acceptance rate is

A(x , x̃) = min
(
1, e−H(x̃)+H(x)

)
= min

(
1, e−δH

)
.

Thus we have

(PMDH)(x) = A · H(x̃) + (1−A) · H(x)

= H(x) +A · δH.

The term A · δH is bounded from above since
If δH ≤ 0 then A · δH = δH ≤ 0.
If δH > 0 then A · δH = e−δHδH ≤ 1/e, the maximum value being attained at δH = 1.
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Generalized Drift Condition for compactM
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3 The combination of steps satisfy the strong GDC.
If a bounded number of transitions {Pi} with i = 1, ..., n all satisfy the weak GDC, and
furthermore one of them Pk satisfies the strong GDC, then the composite transition
satisfies the strong GDC whose parameters are

γ = γk , K =
∑
i

Ki .

Thus HMC on a compact Riemannian manifold satisfies the strong GDC.
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Drift Condition on non-compactM
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What goes wrong in the non-compact case?

Doeblin’s Condition is fine.

previous results, such as weak GDC for Metropolis still hold.

V is no longer bounded thus SMR merely satisfies the weak GDC

(PMRH)(q, p) = V (q) + (cos θ)2T (p) + (sin θ)2

= H(q, p) + sin θ2(1− T (p)),

We fix this by introducing a new Markov step that has the desired fixed-point distribution and
satisfies the strong GDC by construction. It is a Metropolis algorithm in the radial direction.
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Radial Metropolis Algorithm
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The algorithm is on the base manifoldM. With a reference point q0 as the origin, the radius
is defined as the distance rq ≡ d(q, q0), the complementary angular direction is denoted by
θ ∈ Ωθ, so we have the parameterization q = (r , θ).

Define a forward step f : r → f (r) = Rf and the corresponding backward step
b : r → g(r) = Rb such that b = f −1. Then, the algorithm works as follows

1 r → Rf or r → Rb with equal probability = 1
2 .

2 Apply a Metropolis test with the acceptance rate A = min(1, e−δV ).
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GDC for Radial Metropolis
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At angle θ0. Denote the acceptance rate Ax(r → Rx) = min
(
1, e−V (Rx )+V (r)J(Rx , r)

)
,

transition on V is:

(PrV )(r) =
1

2

∑
x∈{f ,b}

{V (Rx)Ax + V (r) (1−Ax)}

Three conditions sufficient for Radial Metropolis to satisfy strong GDC:

1 ∃R̃ such that e−V (Rf )+V (r)J(Rf , r) ≤ 1 ≤ e−V (Rf )+V (r)J(Rb, r) for all r > R̃.

2 Backward step shrinks V : ∃ρ ∈ (0, 1) such that ∀r ≥ R̃ one has V (Rb) ≤ ρV (r) + N.

3 ∃M ≥ 0 such that J(Rf , r)δV · e−δV ≤ M.
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GDC for Radial Metropolis
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Under these requirements

(PrV )(r) =
1

2

∑
x∈{f ,b}

{V (Rx)Ax + V (r) (1−Ax)}

=
1

2

{
J(Rf , r)δVe

−δV + V (r) + V (Rb)
}

≤ 1 + ρ

2
V (r) +M + N

= γV (r) + K .

We now provide a choice of forward/backward steps that meet these requirements.
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Radial Metropolis: polynomial potential
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Case 1: V (r) = krα + o(rα).

Forward step: r → Rf = (1 + ϵ)r ,

Backward step: r → Rb = r/(1 + ϵ).

All three conditions met, with parameters:

1 R̃ ≥
{

log(1 + ϵ)

k(1− (1 + ϵ)−α)

}1/α

.

2 γ =
1

(1 + ϵ)α
.

3 K = (1 + ϵ)/e.
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Example: ϕ4
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Consider the lattice action with volume N and n dimension of ϕ (thusM = RN×n):

S =
∑
x ,i

1

2
|∇µϕx ,i |2 +

1

2
m2|ϕx ,i |2 +

λ

4!
(|ϕx ,i |2)2.

Set a basis (θ, r) ∈ RN×n such that ϕx ,i = fx ,i (θ)r and
∑

x ,i |fx ,i (θ)|2 = 1, so:

S = k1(θ)r
4 + k2(θ)r

2.
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Radial Metropolis: logarithmic potential
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Case 2: V (r) = β log r + o(log r).

Forward step: Rf = r(1 + ϵ · r)δ,
Backward step: r = Rb(1 + ϵ · Rb)

δ.

All three conditions are met, with parameters:

1 R̃b ≥ 1
ϵ

{(
(1 + δ)

1
β−1 − 1

)1/δ
}

2 γ = 1
δ .

3 K = β(1+δ)
(β−1)e .
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Radial Metropolis: uniform GDC
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What we have done so far: strong GDC in any direction θ0 by radial Metropolis.

What we need: strong GDC of the whole space.

It requires combine the GDCs for all angluar directions and obtain one single GDC bound.
Fortunately Ωθ is compact, at least in finite dimensional spaces, so we have the following:

For a family of strong drift conditions along radial directions with γ(θ) ∈ (0, 1) and K (θ) > 0
are continuous functions of θ ∈ Ωθ for a compact state subspace Ω, there exist a constant
γ ∈ [0, 1) and a constant K > 0 such that they are maxima of the corresponding functions at
some θ, hence the family of the strong GDCs yields uniformly a strong drift condition with γ
and K :

(PrL)(r , θ) ≤ γL(r , θ) + K .
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Thank you !
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M
y xinfε

C

If the C chosen by GDC has R > ε, infx ,y P(x → y) vanishes, if R ≤ ε it is fine.
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