Geometric Convergence of HMC on Complete Riemannian Manifolds

Xinhao Yu and A. D. Kennedy

Higgs Centre School *of* Physics *and* Astronomy University of Edinburgh

Liverpool, Lattice2024

Daily work: sampling from $\tilde{\mu}$ on \mathcal{M} using algorithm \mathcal{P} .

Our aim: conditions on $\mathcal{P} \Longrightarrow$ converge exponentially towards $\tilde{\mu}.$

Assuming sampling space ${\mathcal M}$ is a complete Riemannian manifold, we prove

- If \mathcal{M} is compact, HMC converges.
- If \mathcal{M} is non-compact, after mixed with a radial Metropolis(provided there is radial direction), HMC converges.

Outline

Background: Harris' theorem

2 Convergence proof for HMC

Convergence of Markov chains

What do we mean by convergence?

Banach fixed-point theorem

If (X,d) is a complete metric space and the transition $\mathcal{P}:X o X$ is a contraction mapping,

$$d(\mathcal{P}\mu,\mathcal{P}\nu) \leq a \cdot d(\mu,\nu)$$

for some $a \in [0,1)$ and $\forall \mu, \nu \in X$, then there is a unique fixed-point $\tilde{\mu}$ such that $\lim_{n \to \infty} \mathcal{P}^n \mu = \tilde{\mu} \quad \forall \mu \in X$.

So one has to prepare

- a metric on the space of probability measures.
- show \mathcal{P} is a contraction on it.

Compact spaces: Doeblin's condition

A sufficient condition for convergence on compact spaces is

Doeblin's condition

If $\exists \alpha \in (0,1)$ and a probability measure ν such that

$$\mathcal{P}(x,\cdot) \ge \alpha \nu(\cdot) \qquad \forall x \in \mathcal{M}$$

then the Markov chain converges geometrically.

Total Variation (TV) metric:

$$d(\mu, \nu) \equiv \|\mu - \nu\|_{\mathsf{TV}} = \sup_{A \in \mathcal{B}(\mathcal{M})} |\mu(A) - \nu(A)|.$$

• It may be shown that $\forall \mu, \nu \in X$:

$$\|\mathcal{P}\mu - \mathcal{P}\nu\|_{\mathsf{TV}} \leq (1-\alpha) \cdot \|\mu - \nu\|_{\mathsf{TV}}$$

Harris' Theorem

Not able to construct Doeblin's condition on the whole non-compact ${\mathcal M}$ since

$$1 = \int_{\mathcal{M}} \mathcal{P}(x, \mathcal{M}) \cdot \mu_{V}(dx) \ge \alpha \nu(\mathcal{M}) \cdot \mu_{V}(\mathcal{M})$$

and the volume $\mu_V(\mathcal{M})$ can be infinite.

Harris' theorem

7/32

Hairer and Mattingly gave an elegant simplification of Harris theorem¹.

Geometric Drift Condition (GDC)

There is a Lyapunov function $L: \mathcal{M} \to [0, \infty), \ \gamma \in (0, 1), \ \text{and} \ K \geq 0$ such that $\forall x \in \mathcal{M}$ we have

$$(\mathcal{P}L)(x) \leq \gamma \cdot L(x) + K.$$

• if $\gamma \in [0, 1]$, we say weak GDC.

Doeblin's Condition (DC)

 $\exists \alpha \in (0,1)$, a probability measure ν , and a small set $\mathcal{C} = \{x \in \mathcal{M} : L(x) \leq R\}$ where $R > \frac{2K}{1-\gamma}$, such that

$$\inf_{\mathsf{x}\in\mathcal{C}}\mathcal{P}(\mathsf{x},\cdot)\geq\alpha\nu(\cdot).$$

• use a more simple condition:

$$\inf_{x,y\in\mathcal{C}}P(x\to y)\geq\alpha.$$

¹Martin Hairer and Jonathan C. Mattingly (2011). "Yet Another Look at Harris' Ergodic Theorem for Markov Chains". In: Seminar on Stochastic Analysis, Random Fields and Applications VI. ed. by Robert Dalang, Marco Dozzi, and Francesco Russo. Basel: Springer, pp. 109–117. ISBN: 978-3-0348-0021-1

Outline

Background: Harris' theorem

Convergence proof for HMC

Introduction

HMC assigns each degree of freedom a fictitious momentum:

$$q\in\mathcal{M}\longrightarrow (q,p)\in\mathcal{T}^*\mathcal{M}$$

The cotangent bundle $T^*\mathcal{M}$ admits a symplectic structure because

- \exists Liouville one-form: $\exists \theta \in \Lambda^1(T^*\mathcal{M})$ with $\beta^*\theta = \beta$, $\forall \beta \in \Lambda^1(\mathcal{M})$.
- \exists a closed, non-singular fundamental two-form ω :

$$\omega \equiv -d\theta$$
, $d\omega = 0$, $\det \omega \neq 0$.

Then for every smooth function F, there is a unique Hamiltonian vector field \hat{F} such that

$$\omega(\hat{F},\cdot)=-dF.$$

Trajectories, denoted as $\sigma_{\hat{F}}$, are local flows tangential to \hat{F} .

Doeblin's condition for probability density

Probability Densities

A probability density is usually just the Radon–Nikodym derivative of the transition probability, but sometimes this needs to be extended to a distribution (generalized function).

Measure of $T^*\mathcal{M}$ is the volume form of the phase space:

$$Vol \equiv \omega^n$$
.

Define probability densities:

$$P(x \to y) \equiv \frac{d\mathcal{P}(x,\cdot)}{d\mathrm{Vol}}(y), \quad Q(y) \equiv \frac{d\nu}{d\mathrm{Vol}}(y).$$

Then $\forall x, y \in \mathcal{C}$:

$$P(x \to y) \ge c > 0 \iff P(x \to y) \ge \alpha Q(y) \Leftrightarrow \mathcal{P}(x, \cdot) \ge \alpha \nu.$$

Doeblin's condition for probability density

It is convenient to use on $T^*\mathcal{M}$ and \mathcal{M} that are invariant under transition:

• symplectomorphisms (canonical transformations) preserve the volume form:

$$\mathcal{L}_{\hat{V},\hat{\mathcal{T}}}$$
 Vol = 0.

• \hat{T} is an isometry: Riemannian measure μ_g is preserved.

As a result, the extended target distribution

$$\int_{\text{Vol}} e^{-H} = \int_{\text{Vol}} e^{-(V+T)}$$

has well-defined state density e^{-H} , and after integration over momentum:

$$\int_{\mathrm{Vol}} e^{-(T+V)} \Rightarrow \int_{\mu_g} e^{-V}$$

also has well-defined e^{-V} .

Algorithm

The algorithm we use:

1 (Partial) Momentum Refreshment

$$S_{\mathsf{MR}}: (q,p) \mapsto (q',p') = p \cdot \cos \theta + \eta \cdot \sin \theta, \quad \eta \sim \mu_{\mathsf{G}}.$$

- **②** Molecular Dynamics Monte Carlo (S_{MDMC}) Which is made up of
 - A Hamiltonian trajectory

$$S_{\mathsf{MD}}: (q,p) \mapsto (q',p') = \sigma(t).$$

- A Metropolis accept/reject test S_{MC} .
- A momentum flip if rejected:

$$S_{\mathsf{Flip}}: (q,p) \mapsto (q,-p).$$

Algorithm

We use the Leapfrog (Verlet, Störmer) integrator S_{LF} to approximate Hamiltonian dynamics S_{MD} ; given a step size τ , it is

$$S_{\mathsf{MD}} = S_{\mathsf{LF}} \equiv \sigma_{\hat{V}} \left(rac{ au}{2}
ight) \circ \sigma_{\hat{T}} \left(au
ight) \circ \sigma_{\hat{V}} \left(rac{ au}{2}
ight).$$

Kinetic energy T is naturally defined by the inverse Riemannian metric

$$T(q,p)\equiv rac{1}{2}g_q^{-1}(p,p).$$

Thus the Gibbs sampler of S_{MR} is the distribution

$$\mu_G(A) \propto \int_A e^{-T(q,\eta)} d\eta.$$

Leapfrog on the cotangent bundle

Levi-Civita connection ∇ :

$$\nabla g = 0.$$

$$\nabla_X Y - \nabla_Y X - [X, Y] = 0, \quad \forall X, Y \in \mathfrak{X}(\mathcal{M}).$$

 ∇ is an Ehresmann connection:

$$T_X T^* \mathcal{M} = \mathcal{V}_X \oplus \mathcal{H}_X$$
.

Denote \sharp the musical isomorphism of g, we have:

• \hat{V} is vertical:

$$\hat{V} = (0, -dV)$$
 $\sigma_{\hat{V}}(t) : (q, p) \mapsto (q, p - t \cdot dV_q).$

• \hat{T} is horizontal:

$$\hat{T} = (p^{\sharp}, 0) \quad \sigma_{\hat{T}}(t) : (q, p) \mapsto (\exp_{a}(t \cdot p^{\sharp}), p'), \quad T(x) = T(x').$$

Doeblin's condition for HMC

So, An update is:

$$(q_0,p_0) \xrightarrow{S_{\mathsf{MR}}} (q_0,p_1) \xrightarrow{\sigma_{\hat{\boldsymbol{V}}}} (q_0,p_2) \xrightarrow{\sigma_{\hat{\boldsymbol{T}}}} (q_1,p_3) \xrightarrow{\sigma_{\hat{\boldsymbol{V}}}} (q_1,p_4) \xrightarrow{S_{\mathsf{MR}}} (q_1,p_5)$$

The step $S_{MC} \circ S_{Flip}$ after (q_1, p_4) is not shown explicitly.

small set

The Lyapunov function is chosen to be Hamiltonian: $L \equiv H$.

The small set is:

$$\mathcal{C} = \{x \in T^*\mathcal{M} \big| H(x) \le V_R \}$$

Doeblin's condition for HMC

- We have
 - $|V(q_1) V(q_0)| \le V_R \Rightarrow |q_1 q_0| \le R$.
 - $|dV_{q_0}| \leq M_1$
- $\circ \sigma_{\hat{T}}$ exists:

By Hopf-Rinow theorem, there is a geodesic connecting any two points on \mathcal{M} , $\sigma_{\hat{T}}$ is the unique horizontal lift of it.

 $(q_0, p_2) = T(q_1, p_3)$ is bounded, since

$$T = d(q_0, q_1)^2/2\tau^2$$

- $p_2 = p_0 \cos \theta + \eta \sin \theta \frac{\tau}{2} dV_{q_0} \Rightarrow T(\eta)$ and $e^{-T(\eta)}$ bounded.
- As a result, the probability density is bounded by

$$P(x \to y) \ge c = \exp\left\{\frac{-2}{\sin^2\theta}\left[\frac{R^2}{2\tau^2} + \cos^2\theta V_R + \frac{\tau^2}{4}M_1^2\right]\right\} \cdot e^{-2V_R},$$

the multiplication of probability densities from two S_{MR} and a Metropolis test.

Leapfrog integrator

Reasons for using a single Leapfrog step:

- When $\mathcal C$ disconnected, $\sigma_{\hat T}$ can join state between subsets. This will not work if use exact integrator $\sigma_{\hat H}$.
- A trajectory consists of a random number of Leapfrog steps, and there is a positive probability of taking a single step.
- This depends on ability of the algorithm to cross a potential barrier, HMC was not designed to deal with such barriers.

Geometric drift condition: Compact $\mathcal M$

- No need for Harris' theorem if total momentum refreshment.
- However in general we must consider the non-compact phase space $T^*\mathcal{M}$ as the state space; e.g., when partial momentum refreshment is used.

Lyapunov function L

Choose the Lyapunov function to be the Hamiltonian, L = H. In general it is always minus the logarithm of the target distribution.

The strategy of our proof is

- Momentum Refreshment satisfies the strong GDC.
- Molecular Dynamics satisfies weak GDC.
- **3** Thus combining them HMC satisfies strong GDC on compact \mathcal{M} .

Generalized Drift Condition for compact ${\mathcal M}$

 \mathcal{M} is compact and V is smooth, so must be bounded $V \leq V_{\mathsf{max}}$.

lacktriangledown Partial momentum refreshment ($\mathcal{P}_{\mathsf{MR}}$) satisfies the strong GDC

$$(\mathcal{P}_{\mathsf{MR}}H)(q,p) = \langle H(q,p) \rangle_{\eta}$$

$$\propto \int_{\Omega} \left[T(q, S_{\mathsf{MR}}(p)) + V(q) \right] e^{-T(\eta)} d\eta$$

$$= V(q) + (\cos \theta)^2 T(q,p) + (\sin \theta)^2$$

$$= (\cos \theta)^2 H(q,p) + (\sin \theta)^2 (1 + V(q))$$

$$\leq (\cos \theta)^2 H(q,p) + (\sin \theta)^2 (1 + V_{\mathsf{max}}).$$

This also works for pseudofermions, since they are generated using a Gibbs sampler (heatbath) from a distribution with exponentially small tails.

Generalized Drift Condition for compact ${\mathcal M}$

 \mathcal{P}_{MD} satisfies weak GDC.

Weak Generalized Drift Condition for the Metropolis Algorithm

In general any Metropolis algorithm satisfies the weak GDC with minus log probability as the Lyapunov function.

Let $\tilde{x} = (\tilde{q}, \tilde{p}) = S_{\text{MD}}(x)$, then the acceptance rate is

$$\mathcal{A}(x,\tilde{x}) = \min\left(1,e^{-H(\tilde{x})+H(x)}\right) = \min\left(1,e^{-\delta H}\right).$$

Thus we have

$$(\mathcal{P}_{\mathsf{MD}}H)(x) = \mathcal{A} \cdot H(\tilde{x}) + (1 - \mathcal{A}) \cdot H(x)$$

= $H(x) + \mathcal{A} \cdot \delta H$.

The term $A \cdot \delta H$ is bounded from above since

- If $\delta H \leq 0$ then $A \cdot \delta H = \delta H \leq 0$.
- If $\delta H > 0$ then $A \cdot \delta H = e^{-\delta H} \delta H \le 1/e$, the maximum value being attained at $\delta H = 1$.

Generalized Drift Condition for compact ${\mathcal M}$

The combination of steps satisfy the strong GDC. If a bounded number of transitions $\{\mathcal{P}_i\}$ with i=1,...,n all satisfy the weak GDC, and furthermore one of them \mathcal{P}_k satisfies the strong GDC, then the composite transition satisfies the strong GDC whose parameters are

$$\gamma = \gamma_k, \qquad K = \sum_i K_i.$$

Thus HMC on a compact Riemannian manifold satisfies the strong GDC.

Drift Condition on non-compact ${\mathcal M}$

What goes wrong in the non-compact case?

- Doeblin's Condition is fine.
- previous results, such as weak GDC for Metropolis still hold.
- \bullet V is no longer bounded thus $S_{\rm MR}$ merely satisfies the weak GDC

$$(\mathcal{P}_{\mathsf{MR}}H)(q,p) = V(q) + (\cos\theta)^2 T(p) + (\sin\theta)^2$$
$$= H(q,p) + \sin\theta^2 (1 - T(p)),$$

We fix this by introducing a new Markov step that has the desired fixed-point distribution and satisfies the strong GDC by construction. It is a Metropolis algorithm in the radial direction.

Radial Metropolis Algorithm

The algorithm is on the base manifold \mathcal{M} . With a reference point q_0 as the origin, the radius is defined as the distance $r_q \equiv d(q, q_0)$, the complementary angular direction is denoted by $\theta \in \Omega_{\theta}$, so we have the parameterization $q = (r, \theta)$.

Define a forward step $f: r \to f(r) = R_f$ and the corresponding backward step $b: r \to g(r) = R_b$ such that $b = f^{-1}$. Then, the algorithm works as follows

- **1** $r \to R_f$ or $r \to R_b$ with equal probability $= \frac{1}{2}$.
- ② Apply a Metropolis test with the acceptance rate $\mathcal{A} = \min(1, e^{-\delta V})$.

GDC for Radial Metropolis

At angle θ_0 . Denote the acceptance rate $\mathcal{A}_x(r \to R_x) = \min (1, e^{-V(R_x) + V(r)} J(R_x, r))$, transition on V is:

$$(\mathcal{P}_r V)(r) = \frac{1}{2} \sum_{x \in \{f,b\}} \left\{ V(R_x) \mathcal{A}_x + V(r) \left(1 - \mathcal{A}_x\right) \right\}$$

Three conditions sufficient for Radial Metropolis to satisfy strong GDC:

- $\exists \tilde{R} \text{ such that } e^{-V(R_f)+V(r)}J(R_f,r) \leq 1 \leq e^{-V(R_f)+V(r)}J(R_b,r) \text{ for all } r > \tilde{R}.$
- ② Backward step shrinks $V: \exists \rho \in (0,1)$ such that $\forall r \geq \tilde{R}$ one has $V(R_b) \leq \rho V(r) + N$.
- **③** $\exists M \geq 0$ such that $J(R_f, r)\delta V \cdot e^{-\delta V} \leq M$.

GDC for Radial Metropolis

Under these requirements

$$(\mathcal{P}_r V)(r) = \frac{1}{2} \sum_{x \in \{f,b\}} \{ V(R_x) \mathcal{A}_x + V(r) (1 - \mathcal{A}_x) \}$$

 $= \frac{1}{2} \{ J(R_f, r) \delta V e^{-\delta V} + V(r) + V(R_b) \}$
 $\leq \frac{1 + \rho}{2} V(r) + M + N$
 $= \gamma V(r) + K.$

We now provide a choice of forward/backward steps that meet these requirements.

Radial Metropolis: polynomial potential

Case 1:
$$V(r) = kr^{\alpha} + o(r^{\alpha})$$
.

- Forward step: $r \to R_f = (1 + \epsilon)r$.
- Backward step: $r \to R_b = r/(1+\epsilon)$.

All three conditions met, with parameters:

$$\tilde{R} \geq \left\{ \frac{\log(1+\epsilon)}{k(1-(1+\epsilon)^{-\alpha})} \right\}^{1/\alpha}.$$

$$\mathbf{2} \ \ \gamma = \frac{1}{(1+\epsilon)^{\alpha}}.$$

3
$$K = (1 + \epsilon)/e$$
.

Example: ϕ^4

Consider the lattice action with volume N and n dimension of ϕ (thus $\mathcal{M} = \mathbb{R}^{N \times n}$):

$$S = \sum_{\mathbf{x},i} \frac{1}{2} |\nabla_{\mu} \phi_{\mathbf{x},i}|^2 + \frac{1}{2} m^2 |\phi_{\mathbf{x},i}|^2 + \frac{\lambda}{4!} (|\phi_{\mathbf{x},i}|^2)^2.$$

Set a basis $(\theta, r) \in \mathbb{R}^{N \times n}$ such that $\phi_{x,i} = f_{x,i}(\theta)r$ and $\sum_{x,i} |f_{x,i}(\theta)|^2 = 1$, so:

$$S = k_1(\theta)r^4 + k_2(\theta)r^2.$$

Radial Metropolis: logarithmic potential

Case 2:
$$V(r) = \beta \log r + o(\log r)$$
.

$$\beta \geq D-1 \geq 0$$
 for normalization

- Forward step: $R_f = r(1 + \epsilon \cdot r)^{\delta}$,
- Backward step: $r = R_b(1 + \epsilon \cdot R_b)^{\delta}$.

All three conditions are met, with parameters:

$$m{\tilde{R}}_b \geq rac{1}{\epsilon} \left\{ \left((1+\delta)^{rac{1}{eta-1}} - 1
ight)^{1/\delta}
ight\}$$

Radial Metropolis: uniform GDC

What we have done so far: strong GDC in any direction θ_0 by radial Metropolis.

What we need: strong GDC of the whole space.

It requires combine the GDCs for all angluar directions and obtain one single GDC bound. Fortunately Ω_{θ} is compact, at least in finite dimensional spaces, so we have the following:

For a family of strong drift conditions along radial directions with $\gamma(\theta) \in (0,1)$ and $K(\theta) > 0$ are continuous functions of $\theta \in \Omega_{\theta}$ for a compact state subspace Ω , there exist a constant $\gamma \in [0,1)$ and a constant K > 0 such that they are maxima of the corresponding functions at some θ , hence the family of the strong GDCs yields uniformly a strong drift condition with γ and K:

$$(\mathcal{P}_r L)(r,\theta) \leq \gamma L(r,\theta) + K.$$

Thank you!

If the C chosen by GDC has $R > \varepsilon$, $\inf_{x,y} P(x \to y)$ vanishes, if $R \le \varepsilon$ it is fine.