Geometric Convergence of HMC on Complete Riemannian Manifolds

Xinhao Yu and A. D. Kennedy

Higgs Centre School of Physics and Astronomy University of Edinburgh

Liverpool, Lattice2024

Daily work: sampling from $\tilde{\mu}$ on M using algorithm \mathcal{P} .

Our aim: conditions on $\mathcal{P} \Longrightarrow$ converge exponentially towards $\tilde{\mu}$.

Assuming sampling space M is a complete Riemannian manifold, we prove

- If M is compact, HMC converges.
- If M is non-compact, after mixed with a radial Metropolis(provided there is radial direction), HMC converges.

1 [Background: Harris' theorem](#page-2-0)

2 [Convergence proof for HMC](#page-7-0)

What do we mean by convergence?

Banach fixed-point theorem

If (X, d) is a complete metric space and the transition $P : X \to X$ is a contraction mapping,

 $d(\mathcal{P}\mu,\mathcal{P}\nu) \leq a \cdot d(\mu,\nu)$

for some $a \in [0, 1)$ and $\forall \mu, \nu \in X$, then there is a unique fixed-point $\tilde{\mu}$ such that $\lim_{n\to\infty} \mathcal{P}^n \mu = \tilde{\mu} \quad \forall \mu \in X.$

So one has to prepare

- a metric on the space of probability measures.
- \bullet show P is a contraction on it.

Compact spaces: Doeblin's condition

A sufficient condition for convergence on compact spaces is

Doeblin's condition

If $\exists \alpha \in (0,1)$ and a probability measure ν such that

$$
\mathcal{P}(\mathsf{x},\cdot) \geq \alpha \nu(\cdot) \qquad \forall \mathsf{x} \in \mathcal{M}
$$

then the Markov chain converges geometrically.

• Total Variation (TV) metric:

$$
d(\mu,\nu) \equiv \|\mu-\nu\|_{\mathsf{TV}} = \sup_{A \in \mathcal{B}(\mathcal{M})} |\mu(A)-\nu(A)|.
$$

• It may be shown that $\forall \mu, \nu \in X$:

$$
\|\mathcal{P}\mu-\mathcal{P}\nu\|_{\mathsf{TV}}\leq (1-\alpha)\cdot\|\mu-\nu\|_{\mathsf{TV}}
$$

Not able to construct Doeblin's condition on the whole non-compact M since

$$
1 = \int_{\mathcal{M}} \mathcal{P}(x, \mathcal{M}) \cdot \mu_V(dx) \geq \alpha \nu(\mathcal{M}) \cdot \mu_V(\mathcal{M})
$$

and the volume $\mu_V(\mathcal{M})$ can be infinite.

Harris' theorem

Hairer and Mattingly gave an elegant simplification of Harris theorem $^1_\cdot$

Geometric Drift Condition (GDC)

There is a Lyapunov function $L : \mathcal{M} \to [0, \infty), \gamma \in (0, 1)$, and $K \geq 0$ such that $\forall x \in M$ we have

 $({\cal P}L)(x) \leq \gamma \cdot L(x) + K$.

Doeblin's Condition (DC)

 $\exists \alpha \in (0,1)$, a probability measure ν , and a small set $C = \{x \in \mathcal{M} : L(x) \leq R\}$ where $R > \frac{2K}{1}$ $\frac{2\pi}{1-\gamma}$, such that $\inf_{x \in \mathcal{C}} \mathcal{P}(x, \cdot) \geq \alpha \nu(\cdot).$

- if γ ∈ [0, 1], we say weak GDC. use a more simple condition:
	-

$$
\inf_{x,y\in\mathcal{C}} P(x\to y)\geq \alpha.
$$

¹ Martin Hairer and Jonathan C. Mattingly (2011). "Yet Another Look at Harris' Ergodic Theorem for Markov Chains". In: Seminar on Stochastic Analysis, Random Fields and Applications VI. ed. by Robert Dalang, Marco Dozzi, and Francesco Russo. Basel: Springer, pp. 109–117. ISBN: 978-3-0348-0021-1.
Xinhao (Edinburgh) (Seometric Convergence of HMC Xinhao (Edinburgh) [Geometric Convergence of HMC](#page-0-0) Friday, 2 August 2024 7 / 32

1 [Background: Harris' theorem](#page-2-0)

2 [Convergence proof for HMC](#page-7-0)

HMC assigns each degree of freedom a fictitious momentum:

 $q \in \mathcal{M} \longrightarrow (q,p) \in \mathcal{T^*M}$

The cotangent bundle $T^*\mathcal{M}$ admits a symplectic structure because

∃ Liouville one-form: ∃ $\theta \in \Lambda^1(T^*\mathcal{M})$ with $\beta^*\theta = \beta, \ \ \forall \beta \in \Lambda^1(\mathcal{M})$.

 \bullet \exists a closed, non-singular fundamental two-form ω :

$$
\omega \equiv -d\theta, \quad d\omega = 0, \quad \det \omega \neq 0.
$$

Then for every smooth function F, there is a unique Hamiltonian vector field \hat{F} such that

$$
\omega(\hat{F},\cdot)=-dF.
$$

Trajectories, denoted as $\sigma_{\hat{F}}$, are local flows tangential to \hat{F} .

Probability Densities

A probability density is usually just the Radon–Nikodym derivative of the transition probability, but sometimes this needs to be extended to a distribution (generalized function).

Measure of $T^{\ast}\mathcal{M}$ is the volume form of the phase space:

$$
Vol \equiv \omega^n.
$$

Define probability densities:

$$
P(x \to y) \equiv \frac{dP(x, \cdot)}{d\text{Vol}}(y), \quad Q(y) \equiv \frac{d\nu}{d\text{Vol}}(y).
$$

Then $\forall x, y \in C$:

$$
P(x \to y) \geq c > 0 \Leftrightarrow P(x \to y) \geq \alpha Q(y) \Leftrightarrow P(x, \cdot) \geq \alpha \nu.
$$

It is convenient to use on $\mathcal{T^*\mathcal{M}}$ and $\mathcal M$ that are invariant under transition:

symplectomorphisms (canonical transformations) preserve the volume form:

$$
\mathcal{L}_{\hat{V},\hat{T}}\text{ Vol }=0.
$$

 $\hat{\tau}$ is an isometry: Riemannian measure μ_{g} is preserved.

As a result, the extended target distribution

$$
\int_{\text{Vol}} e^{-H} = \int_{\text{Vol}} e^{-(V+T)}
$$

has well-defined state density e^{-H} , and after integration over momentum:

$$
\int_{\text{Vol}} e^{-(T+V)} \Rightarrow \int_{\mu_{g}} e^{-V}
$$

also has well-defined e^{-V} .

The algorithm we use:

¹ (Partial) Momentum Refreshment

$$
S_{\mathsf{MR}}: (q,p) \mapsto (q',p') = p \cdot \cos \theta + \eta \cdot \sin \theta, \quad \eta \sim \mu_{\mathsf{G}}.
$$

 \bullet Molecular Dynamics Monte Carlo (S_{MDMC}) Which is made up of

• A Hamiltonian trajectory

$$
S_{\text{MD}}: (q,p) \mapsto (q',p') = \sigma(t).
$$

- A Metropolis accept/reject test S_{MC} .
- A momentum flip if rejected:

$$
S_{\text{Flip}}: (q,p) \mapsto (q,-p).
$$

Algorithm

We use the Leapfrog (Verlet, Störmer) integrator S_1 to approximate Hamiltonian dynamics S_{MD} ; given a step size τ , it is

$$
S_{\text{MD}} = S_{\text{LF}} \equiv \sigma_{\hat{V}} \left(\frac{\tau}{2} \right) \circ \sigma_{\hat{\mathcal{T}}} \left(\tau \right) \circ \sigma_{\hat{V}} \left(\frac{\tau}{2} \right).
$$

Kinetic energy T is naturally defined by the inverse Riemannian metric

$$
T(q,p) \equiv \frac{1}{2}g_q^{-1}(p,p).
$$

Thus the Gibbs sampler of S_{MR} is the distribution

$$
\mu_G(A) \propto \int_A e^{-\mathcal{T}(q,\eta)} d\eta.
$$

Levi-Civita connection ∇:

$$
\nabla g = 0.
$$

$$
\nabla_X Y - \nabla_Y X - [X, Y] = 0, \quad \forall X, Y \in \mathfrak{X}(\mathcal{M}).
$$

 ∇ is an Ehresmann connection:

$$
\mathcal{T}_x\,\mathcal{T}^*\mathcal{M}=\mathcal{V}_x\oplus\mathcal{H}_x.
$$

Denote \sharp the musical isomorphism of g, we have:

 \hat{V} is vertical:

$$
\hat{V}=(0,-dV)\quad \sigma_{\hat{V}}(t): (q,p)\mapsto (q,p-t\cdot dV_q).
$$

 $\hat{\tau}$ is horizontal:

$$
\hat{\mathcal{T}}=(p^{\sharp},0) \quad \sigma_{\hat{\mathcal{T}}}(t): (q,p) \mapsto (\exp_q(t \cdot p^{\sharp}),p'), \quad \mathcal{T}(x)=\mathcal{T}(x').
$$

So, An update is:

$$
(q_0,p_0) \mathop{\longrightarrow}^{\text{S}_{\text{MR}}} (q_0,p_1) \mathop{\longrightarrow}^{\sigma_{\hat{V}}}(q_0,p_2) \mathop{\longrightarrow}^{\sigma_{\hat{T}}} (q_1,p_3) \mathop{\longrightarrow}^{\sigma_{\hat{V}}} (q_1,p_4) \mathop{\longrightarrow}^{\text{S}_{\text{MR}}} (q_1,p_5)
$$

The step $S_{MC} \circ S_{Flip}$ after (q_1, p_4) is not shown explicitly.

small set

The Lyapunov function is chosen to be Hamiltonian: $L \equiv H$. The small set is:

$$
\mathcal{C} = \{x \in T^* \mathcal{M} | H(x) \leq V_R \}
$$

Doeblin's condition for HMC

1 We have

$$
\bullet \ |V(q_1)-V(q_0)|\leq V_R \Rightarrow |q_1-q_0|\leq R.
$$

 $|dV_{q_0}|\leq M_1$

2 $\sigma_{\hat{\tau}}$ exists:

By Hopf-Rinow theorem, there is a geodesic connecting any two points on M , $\sigma_{\hat{T}}$ is the unique horizontal lift of it.

•
$$
\mathcal{T}(q_0, p_2) = \mathcal{T}(q_1, p_3)
$$
 is bounded, since

$$
T=d(q_0,q_1)^2/2\tau^2
$$

$$
\bullet \ \ p_2 = p_0 \cos \theta + \eta \sin \theta - \frac{\tau}{2} dV_{q_0} \Rightarrow \ \mathcal{T}(\eta) \text{ and } e^{-\mathcal{T}(\eta)} \text{ bounded.}
$$

⁵ As a result, the probability density is bounded by

$$
P(x \to y) \geq c = \exp\left\{\frac{-2}{\sin^2 \theta} \left[\frac{R^2}{2\tau^2} + \cos^2 \theta V_R + \frac{\tau^2}{4} M_1^2\right]\right\} \cdot e^{-2V_R},
$$

the multiplication of probability densities from two S_{MR} and a Metropolis test.

Leapfrog integrator

Reasons for using a single Leapfrog step:

• When C disconnected, $\sigma_{\hat{\tau}}$ can join state between subsets.

This will not work if use exact integrator $\sigma_{\hat{\mu}}$.

- A trajectory consists of a random number of Leapfrog steps, and there is a positive probability of taking a single step.
- This depends on ability of the algorithm to cross a potential barrier, HMC was not designed to deal with such barriers.

- No need for Harris' theorem if total momentum refreshment.
- However in general we must consider the non-compact phase space $\mathcal{T}^*\mathcal{M}$ as the state space; e.g., when partial momentum refreshment is used.

Lyapunov function L

Choose the Lyapunov function to be the Hamiltonian, $L = H$. In general it is always minus the logarithm of the target distribution.

The strategy of our proof is

- **1** Momentum Refreshment satisfies the strong GDC.
- **2** Molecular Dynamics satisfies weak GDC.
- Thus combining them HMC satisfies strong GDC on compact M .

M is compact and V is smooth, so must be bounded $V \leq V_{\text{max}}$.

 \bullet Partial momentum refreshment (\mathcal{P}_{MR}) satisfies the strong GDC

$$
(\mathcal{P}_{MR}H)(q, p) = \langle H(q, p) \rangle_{\eta}
$$

\n
$$
\propto \int_{\Omega} \left[T(q, S_{MR}(p)) + V(q) \right] e^{-T(\eta)} d\eta
$$

\n
$$
= V(q) + (\cos \theta)^{2} T(q, p) + (\sin \theta)^{2}
$$

\n
$$
= (\cos \theta)^{2} H(q, p) + (\sin \theta)^{2} (1 + V(q))
$$

\n
$$
\leq (\cos \theta)^{2} H(q, p) + (\sin \theta)^{2} (1 + V_{max}).
$$

This also works for pseudofermions, since they are generated using a Gibbs sampler (heatbath) from a distribution with exponentially small tails.

2 P_{MD} satisfies weak GDC.

Weak Generalized Drift Condition for the Metropolis Algorithm

In general any Metropolis algorithm satisfies the weak GDC with minus log probability as the Lyapunov function.

Let $\tilde{x} = (\tilde{q}, \tilde{p}) = S_{MD}(x)$, then the acceptance rate is

$$
\mathcal{A}(x,\tilde{x}) = \min\left(1, e^{-H(\tilde{x}) + H(x)}\right) = \min\left(1, e^{-\delta H}\right).
$$

Thus we have

$$
(\mathcal{P}_{MD}H)(x) = \mathcal{A} \cdot H(\tilde{x}) + (1 - \mathcal{A}) \cdot H(x)
$$

= $H(x) + \mathcal{A} \cdot \delta H$.

The term $A \cdot \delta H$ is bounded from above since

- If $\delta H \leq 0$ then $\mathcal{A} \cdot \delta H = \delta H \leq 0$.
- If $\delta H > 0$ then $\mathcal{A} \cdot \delta H = e^{-\delta H} \delta H \leq 1/e$, the maximum value being attained at $\delta H = 1$.

³ The combination of steps satisfy the strong GDC.

If a bounded number of transitions $\{P_i\}$ with $i = 1, ..., n$ all satisfy the weak GDC, and furthermore one of them P_k satisfies the strong GDC, then the composite transition satisfies the strong GDC whose parameters are

$$
\gamma = \gamma_k, \qquad \mathsf{K} = \sum_i \mathsf{K}_i.
$$

Thus HMC on a compact Riemannian manifold satisfies the strong GDC.

What goes wrong in the non-compact case?

- Doeblin's Condition is fine.
- **•** previous results, such as weak GDC for Metropolis still hold.
- \bullet V is no longer bounded thus S_{MR} merely satisfies the weak GDC

$$
(\mathcal{P}_{MR}H)(q,p) = V(q) + (\cos \theta)^2 T(p) + (\sin \theta)^2
$$

= $H(q,p) + \sin \theta^2 (1 - T(p)),$

We fix this by introducing a new Markov step that has the desired fixed-point distribution and satisfies the strong GDC by construction. It is a Metropolis algorithm in the radial direction.

The algorithm is on the base manifold M. With a reference point q_0 as the origin, the radius is defined as the distance $r_q \equiv d(q, q_0)$, the complementary angular direction is denoted by $\theta \in \Omega_{\theta}$, so we have the parameterization $q = (r, \theta)$.

Define a forward step $f : r \to f(r) = R_f$ and the corresponding backward step $b:r\to \text{} g(r)=R_b$ such that $b=f^{-1}.$ Then, the algorithm works as follows

- **1** $r \rightarrow R_f$ or $r \rightarrow R_b$ with equal probability $=\frac{1}{2}$.
- \bullet Apply a Metropolis test with the acceptance rate $\mathcal{A} = \mathsf{min}(1, e^{-\delta \mathcal{V}}).$

At angle $\theta_0.$ Denote the acceptance rate $\mathcal{A}_\varkappa(r\to R_\varkappa)=$ min $\big(1, e^{-V(R_\varkappa)+V(r)}J(R_\varkappa,r)\big),$ transition on V is:

$$
(\mathcal{P}_r V)(r) = \frac{1}{2} \sum_{x \in \{f,b\}} \{V(R_x) \mathcal{A}_x + V(r) (1 - \mathcal{A}_x)\}\
$$

Three conditions sufficient for Radial Metropolis to satisfy strong GDC:

- D ∃ \tilde{R} such that $e^{-V(R_f)+V(r)}J(R_f,r)\leq 1$ \leq $e^{-V(R_f)+V(r)}J(R_b,r)$ for all $r>\tilde{R}.$
- Backward step shrinks $V: \exists \rho \in (0,1)$ such that $\forall r \geq \tilde{R}$ one has $V(R_b) \leq \rho V(r) + N$.
- $\bullet \ \ \exists M\geq 0$ such that $J(R_f,r)\delta V\cdot e^{-\delta V} \leq M.$

Under these requirements

$$
(\mathcal{P}_r V)(r) = \frac{1}{2} \sum_{x \in \{f,b\}} \{V(R_x)A_x + V(r)(1 - A_x)\}
$$

=
$$
\frac{1}{2} \{J(R_f, r)\delta V e^{-\delta V} + V(r) + V(R_b)\}
$$

$$
\leq \frac{1 + \rho}{2} V(r) + M + N
$$

= $\gamma V(r) + K.$

We now provide a choice of forward/backward steps that meet these requirements.

.

Case 1:
$$
V(r) = kr^{\alpha} + o(r^{\alpha})
$$
.

• Forward step:
$$
r \rightarrow R_f = (1 + \epsilon)r
$$
,

• Backward step: $r \to R_b = r/(1+\epsilon)$.

All three conditions met, with parameters:

\n- $$
\widehat{R} \ge \left\{ \frac{\log(1+\epsilon)}{k(1-(1+\epsilon)^{-\alpha})} \right\}^{1/\alpha}
$$
\n- $$
\widehat{R} \gamma = \frac{1}{(1+\epsilon)^{\alpha}}.
$$
\n- $$
K = (1+\epsilon)/\epsilon.
$$
\n

Consider the lattice action with volume N and n dimension of ϕ (thus $\mathcal{M} = \mathbb{R}^{N \times n})$:

$$
S = \sum_{x,i} \frac{1}{2} |\nabla_{\mu} \phi_{x,i}|^2 + \frac{1}{2} m^2 |\phi_{x,i}|^2 + \frac{\lambda}{4!} (|\phi_{x,i}|^2)^2.
$$

Set a basis $(\theta,r)\in\mathbb{R}^{N\times n}$ such that $\phi_{\mathsf{x},i}=f_{\mathsf{x},i}(\theta)r$ and $\sum_{\mathsf{x},i}|f_{\mathsf{x},i}(\theta)|^2=1$, so:

$$
S=k_1(\theta)r^4+k_2(\theta)r^2.
$$

Case 2: $V(r) = \beta \log r + o(\log r)$.

- Forward step: $R_f = r(1 + \epsilon \cdot r)^{\delta}$,
- Backward step: $r = R_b(1 + \epsilon \cdot R_b)^{\delta}$.

All three conditions are met, with parameters:

\n- $$
\tilde{\mathcal{R}}_b \geq \frac{1}{\epsilon} \left\{ \left((1+\delta)^{\frac{1}{\beta-1}} - 1 \right)^{1/\delta} \right\}
$$
\n- $\gamma = \frac{1}{\delta}$
\n- $\mathcal{K} = \frac{\beta(1+\delta)}{(\beta-1)e}$
\n

 $\beta > D - 1 > 0$ for normalization

What we have done so far: strong GDC in any direction θ_0 by radial Metropolis.

What we need: strong GDC of the whole space.

It requires combine the GDCs for all angluar directions and obtain one single GDC bound. Fortunately Ω_{θ} is compact, at least in finite dimensional spaces, so we have the following:

For a family of strong drift conditions along radial directions with $\gamma(\theta) \in (0,1)$ and $K(\theta) > 0$ are continuous functions of $\theta \in \Omega_\theta$ for a compact state subspace Ω , there exist a constant $\gamma \in [0,1)$ and a constant $K > 0$ such that they are maxima of the corresponding functions at some θ , hence the family of the strong GDCs yields uniformly a strong drift condition with γ and K :

$$
(\mathcal{P}_r L)(r,\theta) \leq \gamma L(r,\theta) + K.
$$

Thank you !

If the C chosen by GDC has $R > \varepsilon$, inf_{x,y} $P(x \to y)$ vanishes, if $R \leq \varepsilon$ it is fine.