Applying the Worldvolume Hybrid Monte Carlo method to the (1+2)-dim Hubbard model

Yusuke Namekawa (Hiroshima Univ.)

in collaboration with Masafumi Fukuma (Kyoto Univ.)

2024/08/02

Introduction

Sign problem is an obstacle to 1st-principles calculations of important physics, such as finite density QCD

We utilize Wolrdvolume Hybrid Monte Carlo (WV-HMC) method

Fukuma, Matsumoto (2020), Fukuma, Matsumoto, YN (2021)

- Feature : WV-HMC solves the sign and the ergodicity problems simultaneously at low cost
- Group manifolds
 Dynamical fermion systems
 Talk by Masafumi Fukuma
 This talk Fukuma and YN (in prep)
 (Hubbard model as a testbed)

cf. full QCD = pure Yang-Mills theory + dynamical quarks

Previous works on Hubbard model with thimble approach

- (Generalized) thimble method with dominant thimble approx. Mukherjee and Cristoforetti (2014), Ulybyshev et al. (2020, 2023), Ulybyshev and Assaad (2024)
 - Calculated only dominant thimbles, avoiding ergodicity problem

WV-HMC needs no dominant thimble approx., because WV-HMC has already solved the ergodicity problem

- Tempered Lefschetz thimble method Fukuma, Matsumoto, Umeda (2019)
 - Solved sign and ergodicity problems simultaneously
 - High cost limits the lattice size to $N_t \times N_s \times N_s = 5 \times 2 \times 2$

WV-HMC cost is significantly smaller than that of tempered Lefschetz thimble method

cf. non-Monte Carlo approach

 Tensor RG method D=1+1 Akiyama, Kuramashi (2021), D=2+1 Akiyama et al. (2021) 2024/08/02 Lattice 2024 Yusuke Namekawa

WV-HMC algorithm (1 / 3)

(3) accept / reject test 2024/08/02

WV-HMC algorithm (2 / 3)

Projections and RATTLE are composed of flow equations

- config flow eq : map $x \in \mathbb{R}^N \to z = z_t \in \mathbb{C}^N$ $\dot{z}_t = \overline{\partial S(z_t)}$, $z_{t=0} = x$
- vector flow eq : map of vector $u \rightarrow v = v_t$ $\dot{v}_t = \overline{(\partial \partial S(z_t)) v_t}$, $v_{t=0} = u$

See next page for computational cost of the flow eq.

2024/08/02

WV-HMC algorithm (3 / 3)

ex. config flow eq. in the presence of fermion

 $Z = \int dA \det D(A) e^{-S} = \int dA e^{-S_{eff}(A)}, \qquad S_{eff}(A) = \frac{1}{2}A^2 - \log \det D(A)$

$$\dot{z}_t = \overline{\partial S_{eff}(z_t)}, \quad \partial S_{eff}(A) = A - \operatorname{tr}\left(D^{-1} \frac{D(A)}{\partial A}\right)$$

Solver is needed for each flow eq.

- Direct solver costs $O(N^3)$ $N \equiv$ Degrees of Freedom
- CG-type solver costs $O(N^2)$ Fukuma and YN (in prep)
- cf. BiCGStab-type solver costs O(N), but suffers from non-convergence

Hubbard model (1 / 4)

A model for electrons in a solid Hubbard (1963)

Hamiltonian in spatial *d*-dim

K

$$H = -\kappa \sum_{\substack{,s}} c_{x,s}^{\dagger} c_{y,s} - \mu \sum_{x} (n_{x,\uparrow} + n_{x,\downarrow}) + U \sum_{x,s} n_{x,\uparrow} n_{x,\downarrow} , n_{x,s} \coloneqq c_{x,s}^{\dagger} c_{x,s}$$

Nearest neighbor
electron pairs Sign problem occurs at $\mu \neq U/2$
(away from half filling)

Hubbard model (2 / 4)

Partition function in (1 + d)-dim

 $Z = \operatorname{tr} e^{-\beta H} \qquad \beta = N_t \epsilon = \text{inverse temperature} \\ = \operatorname{tr} \widehat{T}^{N_t} \qquad \widehat{T} = \text{transfer matrix} \\ = \int d\overline{\psi} \, d\psi \, e^{-S(\overline{\psi}, \psi)}$

$$S(\bar{\psi},\psi) = \sum_{x} \left[\bar{\psi}_{x} \left(\psi_{x+\hat{0}} - \psi_{x} - \epsilon \kappa \sum_{i=1}^{d} (\psi_{x+\hat{i}} + \psi_{x-\hat{i}}) - \epsilon \mu \psi_{x} \right) + \frac{\epsilon U}{2} (\bar{\psi}_{x} \psi_{x})^{2} \right]$$

Apply Hubbard-Stratonovich transformation
 \rightarrow Next page

2024/08/02

Hubbard model (3 / 4)

Generalized Hubbard-Stratonovich transformation Beyl et al. (2018)

$$(\hat{n}_{x,\uparrow} - \hat{n}_{x,\downarrow})^2 = \alpha \ (\hat{n}_{x,\uparrow} - \hat{n}_{x,\downarrow})^2 - (1 - \alpha)(\hat{n}_{x,\uparrow} + \hat{n}_{x,\downarrow} - 1)^2 + (1 - \alpha)(\hat{n}_{x,\uparrow} - \hat{n}_{x,\downarrow})^2 - (1 - \alpha)(\hat{n}_{x,\uparrow} - \hat{n}_{x,\downarrow})^2 + (1 - \alpha)(\hat{n}_{x,\downarrow} - \hat{n}_{x,\downarrow})^2 + (1 - \alpha)(\hat{n}_{x$$

$$Z = \int d\bar{\psi} \, d\psi \, e^{-S(\bar{\psi},\psi)}$$

$$= \int dA \, d\bar{\psi} \, d\psi \, e^{-\frac{1}{2}\sum_{x,a=1,2}A_{x,a}^2} - \sum_{x,y,f}(\bar{\psi}_f)_x(D_f)_{xy}(\psi_f)_y$$

$$= \int dA \, e^{-\frac{1}{2}\sum_{x,a=1,2}A_{x,a}^2} \, \det D_a \, \det D_b$$

Hubbard model $(4 / 4)^{1\times 1}$

We can further introduce pseudofermions: Fukuma and YN (in prep)

$$Z = \int dA \ e^{-\frac{1}{2}\sum_{x,a=1,2}A_{x,a}^2} \ \det D_a \ \det D_b$$
$$= \int dA \ d\varphi \ e^{-S(A,\varphi)} \qquad \qquad M_f \equiv D_f(A)D_f^T(A)$$
$$S(A,\varphi) = \frac{1}{2}\sum_{x,a}A_{x,a}^2 + \frac{1}{2}\sum_{x,y,f}(\varphi_f)_x^T (M_f)_{xy}^{-1}(\varphi_f)_y$$

- This rewriting is justified when (Re det *M*)>0 and (Re *M*⁻¹)>0
- CG-type solver is then applicable
 2024/08/02
 Lattice 2024 Yusuke Namekawa

Setup 1 : choice of α Fukuma and YN (in prep)

Redundant parameter α affects the sign and the ergodicity problems We choose α at an intermediate value which avoids the ergodicity problem and a less sign problem than that at $\alpha = 1$.

Remaining sign problem is solved by WV-HMC.

Setup 2 : choice of flow time Fukuma and YN (in prep)

We set the target flow time T to the minimum value among those flow times that solve the remaining sign problem.

Result 1 : computational cost scaling

We evaluate the computational cost of RATTLE using <u>GT-HMC</u> (fixed flow time version of WV-HMC) with tuned α Alexandru@Lattice2019, Fukuma et al. (2019)

2024/08/02

Result 2 : number density Fukur

Fukuma and YN (in prep)

We measure number density $\langle n \rangle$ with naïve reweighting and WV-HMC

- Naïve reweighting suffers from large errors
 Tuning of α reduces sign problem, but does not completely resolve it
- WV-HMC gives small errors and is consistent with ALF

ALF is an established MC code in condensed matter physics

Result 3 : energy density Fukuma and YN (in prep)

We measure energy density $\langle e \rangle$ with naïve reweighting and WV-HMC

- Naïve reweighting suffers from large errors
 Tuning of α reduces sign problem, but does not completely resolve it
- WV-HMC gives small errors and is consistent with ALF

ALF is an established MC code in condensed matter physics

2024/08/02

Results 4: larger lattice and lower temperature (ongoing)

Fukuma and YN (in prep)

We move on to a larger lattice (6×6) and a lower temperature $(\beta = 6.4)$, where it becomes harder to evaluate observables with other algorithms

2024/08/02

^{16/17}

Summary

We applied WV-HMC to the sign problem in (1+2)-dim Hubbard model as a step toward finite density QCD Fukuma and YN (in prep)

- Computational cost scaling
 - Direct solver : $O(N^3)$ $N \equiv$ Degrees of Freedom
 - CG-type solver : $O(N^2)$
- Estimates of observables
 - WV-HMC give consistent results with those of well-established ALF code with small statistical errors in the parameter region where the sign problem is severe