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Introduction

Sign problem is an obstacle to 1st-principles calculations of important 

physics, such as finite density QCD

We utilize Wolrdvolume Hybrid Monte Carlo (WV-HMC) method
Fukuma,Matsumoto(2020),Fukuma,Matsumoto,YN(2021)

• Feature : WV-HMC solves the sign and the ergodicity problems
simultaneously at low cost
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◇ Group manifolds                       Talk by Masafumi Fukuma
◇ Dynamical fermion systems       This talk

(Hubbard model as a testbed)

cf. full QCD = pure Yang-Mills theory + dynamical quarks

Fukuma and YN (in prep)



Previous works on Hubbard model
with thimble approach
• (Generalized) thimble method with dominant thimble approx. 

Mukherjee and Cristoforetti (2014), Ulybyshev et al. (2020, 2023), Ulybyshev and Assaad (2024)

• Calculated only dominant thimbles, avoiding ergodicity problem
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cf. non-Monte Carlo approach
• Tensor RG method D=1+1 Akiyama, Kuramashi (2021), D=2+1 Akiyama et al. (2021)

WV-HMC needs no dominant thimble approx., because 
WV-HMC has already solved the ergodicity problem

• Tempered Lefschetz thimble method Fukuma, Matsumoto, Umeda (2019)

• Solved sign and ergodicity problems simultaneously

• High cost limits the lattice size to 𝑁𝑡 ×𝑁𝑠 ×𝑁𝑠 = 5 × 2 × 2

WV-HMC cost is significantly smaller than that of tempered 
Lefschetz thimble method



WV-HMC algorithm（１ / ３）

WV-HMC = HMC on worldvolume ℛ

(1) generate momentum 𝜋

 𝜋 with 𝑃  𝜋 = 𝑒− 𝜋
† 𝜋/2

𝜋 = Πℛ  𝜋 , Πℛ ≡ projection onto 𝑇𝑧ℛ

(2) RATTLE (constrained MD) Andersen(1983), Leimkuhler, Skeel(1994)

𝜋1/2 = 𝜋 − Δ𝑠 𝜕𝑉 𝑧 − 𝜆 , 𝑉 𝑧 ≡ Re 𝑆 𝑧 −𝑊 𝑡 , 𝑊 𝑡 = arbitrary

𝑧′ = 𝑧 + Δ𝑠 𝜋1/2

𝜋′ = 𝜋1/2 − Δ𝑠 𝜕𝑉 𝑧′ − 𝜆′

(3) accept / reject test
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𝜆, ℎ, 𝑢 is determined with Newton
method s.t. 𝑧𝑡+ℎ 𝑥 + 𝑢 = 𝑧′ on ℛ

𝜆′ is determined s.t. 𝜋′ ∈ 𝑇𝑧ℛ

Original integration
path (𝑡 = 0)

Tangent space of ℛ at 𝑧



WV-HMC algorithm（２ / ３）

Projections and RATTLE are composed of flow equations
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• vector flow eq：map of vector 𝑢 → 𝑣 = 𝑣𝑡

 𝑣𝑡 = 𝜕𝜕𝑆 𝑧𝑡 𝑣𝑡 ,   𝑣𝑡=0 = 𝑢

• config flow eq：map 𝑥 ∈ ℝ𝑁 → 𝑧 = 𝑧𝑡 ∈ ℂ𝑁

 𝑧𝑡 = 𝜕𝑆(𝑧𝑡) ,   𝑧𝑡=0 = 𝑥

See next page for computational cost of the flow eq.



WV-HMC algorithm（３ / ３）
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ex. config flow eq. in the presence of fermion

𝜕𝑆𝑒𝑓𝑓 𝐴 = 𝐴 − tr 𝐷−1
𝐷(𝐴)

𝜕𝐴

Solver is needed for each flow eq.
• Direct solver costs 𝑂(𝑁3)
• CG-type solver costs 𝑂(𝑁2)
• cf. BiCGStab-type solver costs 𝑂 𝑁 , but suffers from non-convergence

𝑆𝑒𝑓𝑓 𝐴 =
1

2
𝐴2 − log det 𝐷(𝐴)𝑍 = ∫ 𝑑𝐴 det 𝐷 𝐴 𝑒−𝑆 = ∫ 𝑑𝐴 𝑒−𝑆𝑒𝑓𝑓 𝐴

,

 𝑧𝑡 = 𝜕𝑆𝑒𝑓𝑓(𝑧𝑡) ,

𝑁 ≡Degrees of Freedom

Fukuma and YN (in prep)



Hubbard model（１ / ４）

A model for electrons in a solid Hubbard (1963)
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Nearest neighbor
electron pairs

Wikipedia(2024)

𝜅

𝜅

Sign problem occurs at 𝜇 ≠ 𝑈/2

(away from half filling)

Hamiltonian in spatial 𝑑-dim

𝐻 = −𝜅  

<𝒙,𝒚>,𝑠

𝑐𝒙,𝑠
† 𝑐𝒚,𝑠 − 𝜇 

𝒙

𝑛𝒙,↑ + 𝑛𝒙,↓ + 𝑈 

𝒙,𝑠

𝑛𝒙,↑𝑛𝒙,↓ , 𝑛𝒙,𝑠 ≔ 𝑐𝒙,𝑠
† 𝑐𝒙,𝑠



Hubbard model（２ / ４）

Partition function in (1 + 𝑑)-dim
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𝑆(  𝜓, 𝜓) = 

𝑥

 𝜓𝑥 (𝜓𝑥+ 0 − 𝜓𝑥 − 𝜖𝜅  

𝑖=1

𝑑

𝜓𝑥+  𝑖 + 𝜓𝑥−  𝑖 − 𝜖𝜇 𝜓𝑥) +
𝜖𝑈

2
 𝜓𝑥𝜓𝑥

2

𝑍 = tr 𝑒−𝛽𝐻

= tr  𝑇𝑁𝑡

= ∫ 𝑑  𝜓 𝑑𝜓 𝑒−𝑆(
 𝜓,𝜓)

𝛽 = 𝑁𝑡𝜖 = inverse temperature

 𝑇 = transfer matrix

Apply Hubbard-Stratonovich transformation
→ Next page



Hubbard model（３ / ４）
Generalized Hubbard-Stratonovich transformation Beyl et al. (2018)
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𝐷𝑎/𝑏 𝑥𝑦

≡ 𝛿𝑥+ 0,𝑦 − 𝛿𝑥𝑦 + 𝜖𝜅 

𝑖=1

𝑑

𝛿𝑥+  𝑖,𝑦 + 𝛿𝑥−  𝑖,𝑦 ± 𝜖𝜇 + 𝑖 𝛼𝜖𝑈𝐴1 𝑥 𝛿𝑥𝑦 + 1 − 𝛼 𝜖𝑈𝐴2 𝑥 − (1 − 𝛼) 𝛿𝑥𝑦

+ 𝑂(𝜖2)

𝛼 is a redundant parameter, but affects sign problem 

𝑍 = ∫ 𝑑  𝜓 𝑑𝜓 𝑒−𝑆
 𝜓, 𝜓

(  𝑛𝒙,↑− 𝑛𝒙,↓)
2 = 𝛼 ( 𝑛𝒙,↑ −  𝑛𝒙,↓)

2 − (1 − 𝛼)(  𝑛𝒙,↑ +  𝑛𝒙,↓ − 1)2 + 1 − 𝛼

=  𝑑𝐴 𝑑  𝜓 𝑑𝜓 𝑒−
1
2
 𝑥,𝑎=1,2 𝐴𝑥,𝑎

2 − 𝑥,𝑦,𝑓( 𝜓𝑓)𝑥(𝐷𝑓)𝑥𝑦(𝜓𝑓)𝑦

=  𝑑𝐴 𝑒−
1
2
 𝑥,𝑎=1,2 𝐴𝑥,𝑎

2

det𝐷𝑎 det𝐷𝑏



Hubbard model（４ / ４）
We can further introduce pseudofermions:
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• This rewriting is justified when

(Re det 𝑀)>0 and (Re 𝑀−1)>0

• CG-type solver is then applicable

𝑆 𝐴, 𝜑 =
1

2
 

𝑥,𝑎

𝐴𝑥,𝑎
2 +

1

2
 

𝑥,𝑦,𝑓

(𝜑𝑓)𝑥
𝑇 𝑀𝑓 𝑥𝑦

−1
(𝜑𝑓)𝑦

𝑍 =  𝑑𝐴 𝑒−
1
2
 𝑥,𝑎=1,2 𝐴𝑥,𝑎

2

det𝐷𝑎 det𝐷𝑏

=  𝑑𝐴 𝑑𝜑 𝑒−𝑆(𝐴, 𝜑) 𝑀𝑓 ≡ 𝐷𝑓 𝐴 𝐷𝑓
𝑇 𝐴

Fukuma and YN (in prep)



Setup 1 : choice of 𝛼
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𝛼 = 0 ∶ less sign problem,

severe ergodicity problem

𝛼 = 1 : severe sign problem,

no ergodicity problem

Redundant parameter 𝛼 affects the sign and the ergodicity problems
We choose 𝛼 at an intermediate value which avoids the ergodicity
problem and a less sign problem than that at 𝛼 = 1.
Remaining sign problem is solved by WV-HMC.

0 < 𝛼 < 1 ∶ less sign problem,
less ergodicity problem

N.B. non-vanishing 𝛼 can
improve ergodicity
Beyl et al. (2018)

Fukuma and YN (in prep)



Setup 2 : choice of flow time
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We set the target flow time 𝑇 to the minimum value among
those flow times that solve the remaining sign problem.

Sign problem is severe

Sign problem is mild

Sign problem is severe

Sign problem is mild
Preliminary

Fukuma and YN (in prep)



Result１: computational cost scaling
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(Re det 𝑀)>0 and (Re 𝑀−1)>0

must be satisfied

• CG-type solver : 𝑂 𝑁2

Faster at large volumes

• Direct solver：𝑂 𝑁3

Faster at small volumes

We evaluate the computational cost of RATTLE using GT-HMC
(fixed flow time version of WV-HMC) with tuned 𝛼

Preliminary

Alexandru@Lattice2019,

Fukuma et al. (2019)

Fukuma and YN (in prep)



Result２：number density

• WV-HMC gives small errors

and is consistent with ALF
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• Naïve reweighting suffers
from large errors

Tuning of 𝛼 reduces
sign problem, but
does not completely
resolve it   

ALF is an established MC code

in condensed matter physics
ALF Collab. (2017, 2020)

We measure number density 𝑛 with naïve reweighting and WV-HMC

Preliminary

Probably discretization error

of 𝑂 ( 𝜇 − 𝜇half)𝜖
2

Fukuma and YN (in prep)



Result 3：energy density

• WV-HMC gives small errors

and is consistent with ALF
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• Naïve reweighting suffers
from large errors

Tuning of 𝛼 reduces
sign problem, but
does not completely
resolve it   

We measure energy density 𝑒 with naïve reweighting and WV-HMC

ALF is an established MC code

in condensed matter physics
ALF Collab. (2017, 2020)

Preliminary

Probably discretization error

of 𝑂 ( 𝜇 − 𝜇half)𝜖
2

Fukuma and YN (in prep)



Results 4:
larger lattice and lower temperature (ongoing)

We move on to a larger lattice (6 × 6) and a lower temperature (𝛽 = 6.4), 
where it becomes harder to evaluate observables with other algorithms
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Preliminary Preliminary

Fukuma and YN (in prep)



Summary
We applied WV-HMC to the sign problem in (1+2)-dim Hubbard model 
as a step toward finite density QCD
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• Estimates of observables

• WV-HMC give consistent results with those of well-established ALF 
code with small statistical errors in the parameter region where 
the sign problem is severe

• Computational cost scaling

• Direct solver：𝑂 𝑁3

• CG-type solver : 𝑂 𝑁2

𝑁 ≡Degrees of Freedom

Fukuma and YN (in prep)


