Domain decomposition efforts in Chroma

Eloy Romero¹, Kostas Orginos^{1,2}, Andreas Stathopoulos², Jefferson Lab¹, William & Mary²

Motivation for domain decomposition

Multilevel integration example

► time

- Finer lattice spacing pushes existing algorithms in a voracious increase in computational cost and accuracy
- Benefits of Domain decomposition for solvers on Dslash:
 - Limit the maximum volume that a linear solver deals with, limiting the accumulation of rounding errors
 - Trade inter-node communications for more intra-node communications

- Divide the domain and image of a matrix D into two non-overlapping domains F (frozen sites) and R (disconnected domains)
- We are interested in D^{-1} restricted to R:

- Approximate long-distance effects in an efficient way
- Exploit the sparsity of the right-hand-sides
- Multilevel integration:
 - Decompose the correlation functions into factors that depend only on fields localized into subdomains that can be independently integrated
 - Challenging in the presence of fermions as the action is not local
- First approach for multilevel integration with distillation
 - Work with approximations of the fermionic

$$\begin{bmatrix} D_F & D_{FR} \\ \hline D_{RF} & D_R \end{bmatrix}^{-1} = \begin{bmatrix} \cdots & \cdots & \\ \hline \cdots & D^{-1}(R, R) \end{bmatrix}$$

$$D^{-1}(R,R) = D_R^{-1} + D_R^{-1} D_{RF} (D_F - D_{FR} D_R^{-1} D_{RF})^{-1} D_{FR} D_R^{-1}$$

(by Neumann series)
$$= D_R^{-1} + D_R^{-1} D_{RF} D_F^{-1} \left(\sum_{n=0}^{\infty} \left(D_{FR} D_R^{-1} D_{RF} D_F^{-1} \right)^n \right) D_{FR} D_R^{-1}$$

• We truncate the summation at n = 0 for generating cheaper perambulators: $V^{\dagger}D^{-1}(R,R)V \approx V^{\dagger}(D_{R}^{-1} + D_{R}^{-1}D_{RF}D_{F}^{-1}D_{FR}D_{R}^{-1})V$

• Comparison of a nucleon 2 point correlation function on a $32^3 \times 64$ lattice ensemble with the full perambulator, $C_{2pt}(t) = \langle \mathcal{N}(t)\mathcal{N}(0) \rangle$, and with the cheap perambulator, $C_{2pt}(t)$. Each frozen and domain region has 2 and 30 units, respectively:

determinant and propagator that depends on gauge fields within specific lattice subdomains

- Use reweighting for correcting the action and approximate the statistical bias of the approximate correlation functions
- The efficiency of the technique depends on having cheap and accurate first-level approximations

Implementation details

- superbblas is a CPU/GPU library that supports: dense and block sparse format tensors
 - arbitrary distribution of tensors among computing nodes
 - current tensor operations: AXPY, contraction,
- Ex. of Dslash timings on a Frontier node for a $32^3 \times 64$ lattice
 - hipSPARSE in tensor cores (ms)

RHS

per

time

- mgproton is a solver collection within Chroma, which includes:
- slicing, coloring, and cloning of sparse operators
- Inear solvers: FGMRES, GCR...

factorization (Cholesky, LU)

AXPY tensor operations can be restricted to slices or masks

superbblas uses an extension of BSR for representing the Dslash and its coarse projection for multigrid

preconditioners: Multigrid, Even-odd Schur complement, block Jacobi, SVD deflation

based on superbblas

Lattice 2024

