
DomainDecompositionof theDiracoperator
in theQUDAlibrary

Simone Bacchio, Kate Clark, Jacob Finkenrath, Balint Joo, Ferenc Pittler, Jiqun Tu,
Mathias Wagner, Evan Weinberg

Problem
We are developing a generic 4-dimensional do-
main decomposition aiming to support algo-
rithms such as the Red-Black Schwarz Alter-
nating Procedure (SAP), time-slice domains and
multilevel algorithms in the QUDA library.

QUDA library
QUDA is a portable, open-source, highly-
optimized library for lattice QCD calculations
on GPUs, supported by NVIDIA. It offers an
implementation of most-used Dirac operators,
a state-of-the-art multigrid solver, and eigen-
solvers, as well as recently it fully supports
multiple right-hand sides. It is available on
GitHub [1] and provides C or C++ APIs.

Basic concepts

Figure 1: Schematic representation of the red-
black reduced operator. The Dirac operator D has
been ordered according to the red-black block de-
composition of the lattice.
Example of Domain Decomposition:
Under the red-black domain decomposition, the
Dirac operator assumes a block structure, e.g.

D =

[
Drr Drb

Dbr Dbb

]
and ψ =

[
ψr

ψb

]
,

where Drr, Dbb has a block diagonal form and
Drb, Dbr connecting the respective subdomains
as schematically illustrated in Fig. 1.
Schwarz Alternating Procedure (SAP):
SAP is a well-known approach for solving the
linear system Dψ = b that exploits domain de-
composition techniques [2].
Starting from an initial guess ψ0, the solution
ψn is updated iteratively as

ψn
r = ψn−1

r +D−1
rr

(
br −Drrψ

n−1
r −Drbψ

n
b

)
,

where ψr and ψb are the solutions on the red
and black domains, respectively.
Additive SAP: All domains are updated si-
multaneously using the previous iteration for all.
Multiplicative SAP: Domains are updated
sequentially, using on the right-hand side the
newest available solution on the other domains.

References
[1] https://github.com/lattice/quda
[2] M. Luscher, arXiv:hep-lat/0310048 [hep-lat].
[3] https://github.com/lattice/quda/pull/1447
[4] J. Tu, et al.arXiv:2104.05615 [hep-lat]

Acknowledgements
This work has received funding through the Inno4scale
project, funded by the European High-Performance
Computing Joint Undertaking (JU) under Grant Agree-
ment No 101118139. The JU receives support from the
European Union’s Horizon Europe Programme.

Implementation
The goal of this work is to add in QUDA the infrastructure to easily implement any domain decom-
positions of the Dirac operator. The implementation is currently available in PR#1447 [3] and is
under review. Hereafter we summarize the key features of the implementation.
Strategy: Although the domain-decomposition (DD) is a property of the Dirac operator, we figured
out it was easier to implement it as a property of the color-spinor field (CSF). All CSFs have now
an additional parameter structure, DDparam, that can be dynamically set to switch on DD features
of the field. E.g. the application of Drb, i.e. y = Drbx = PrDPbx, can be expressed by setting the
input vector as “black”, i.e. xb = Pbx, and the output vector as “red”, i.e. yr = Pry, as follows:

Pseudocode for y = Drbx: x.dd_red_only(); y.dd_black_only(); applyD(y,x);

All operators supported: All Dirac operators have been made DD-aware such that if the input
and/or output CSF have DD enabled, then they act properly. This was achieved via two generic
functions which are specialized depending on the DD kind. Namely,

constexp bool DDArg::isZero (const Coord &x) const
constexp bool DDArg::doHopping (const Coord &x, int mu, int dir) const

The first tells whether the in/output field is zero at a given coordinate, and the second if the hopping
in a given direction should be performed. Coordinates are given globally to support “broken” domains.
Performance optimizations: The performance of the Dirac operator is left unchanged via dedi-
cated compilations for each kind of DD, i.e. a dedicated DDArg structure is implemented. In the case
of no DD, DDArg = DDNo, we have DDNo::isZero = false and DDNo::doHopping = true.
Additionally, if domains fit in the local lattice and Dirichlet-like boundary conditions are applied,
then communications are switched off in all directions where not necessary. This is a key feature of
most DDs, which exploit the Dirichlet boundaries to improve the scaling of the hopping term.

Figure 2: Scaling test of the Wilson Dirac oper-
ator using the full operator, red points, and the
red-black decomposed operator, blue points, where
red-red and black-black blocks are applied simulta-
neously but without hopping between them. The
dashed line illustrates the ideal scaling. The tests
were done on Juwels-booster NVIDIA A100 GPUs.
The partitioning was chosen such that the red-black
blocks would fit the local lattice, thus avoiding com-
munications. The block size is 44 and this operator
is commonly used in the additive SAP smoother.

Testing: We have also implemented projection functions that set to zero entries of the CSF that
do not belong to active domains, x.projectDD(). This is used in unit testing for checking that
e.g. Drbx == PrDPbx. Additionally, this is also used as a temporary solution for unsupported
applications and operators, e.g. such as even-odd (EO) preconditioning + DD.
TODO list: The effort is still a work in progress and we are planning the following activities next.
• Support of DD in BLAS routines, i.e. DD-wise reductions and linear algebra. These are necessary
for linear solvers and efficient computation of e.g. D−1

rr br, which is block-wise and local.
• Support of DD in multigrid (MG) operator, i.e. DD-wise restriction, prolongation and coarse Dirac.
Required in the first place to use SAP as a smoother for the multigrid solver, and then to compute
domain-wise solutions using MG in the case of multilevel (ML) algorithms.
• Support of DD in the application of EO preconditioned Dirac operator, i.e.
Schur complement, which requires additional, so-called, snake terms [4]. Fig. 3
illustrates some examples of the snake terms. These terms are truncated if
Dirichlet boundary conditions are enforced on each of the four hopping terms.
But ⌊Doe⌋⌊Deo⌋⌊Doe⌋⌊Deo⌋ ̸= ⌊DoeDeoDoeDeo⌋, where ⌊·⌋ indicates the appli-
cation of Dirichlet boundary conditions on the operator. In Ref [4] is it observed
that these terms are fundamental for the convergence of the solver.
• Improvement of performance executing block-wise threads as done e.g. in the
application of the prolongation and restriction operators of the multigrid solver.

Figure 3: Snake
terms of the D̂†D̂
operator. Credit [4].

Outlook
With a fully supported implementation of domain decomposition tech-
niques in the QUDA library, the following features will be enabled:
• SAP preconditioning as smoother for the multigrid solver.
• Easy addition of custom DD for various applications.
• Improved scaling via computations on the local domains that increase
the throughput while reducing communications.
• DD-wise solution of the Dirac operator, including support for MG
solvers, and thus useful in e.g. master-field simulations to compute the
solution simultaneously on many large domains of the lattice.
• First step towards multi-level simulations, where domains are up-
dated in parallel for an exponential reduction of the noise, see Fig. 4. Figure 4: Multilevel DD.

