Computation of window quantities in $a_{\mu}^{\text{LO-HVP}}$

Bálint C. Tóth^{a,b} for the Budapest–Marseille–Wuppertal collaboration

^a Department of Physics, University of Wuppertal, Gaussstrasse 20, D-42119, Germany ^b Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany

Window observables	Distribution of observables	Long-distance contributions
We are computing several window observables to $a_{\mu}^{\text{LO}-\text{HVP}}$. They are obtained through a weighted integral of the one- photon-irreducible, two-point function $G_{1\gamma I}(t)$ of the quark electromagnetic current:	AIC/flat weights. For a given observable, to systematics related to the fit function and lattice spacing cuts we assign a weight using the Akaike Information Criterion (AIC) in a modified version as derived in Ref. [7]:	Although the vast majority of our final result (over 95%) comes directly from lattice simulations, we replaced the lattice calcu- lation of the contribution to a_{μ} from $G(t)$ above $t \geq 2.8$ fm by a state-of-the-art, data-driven determination.
$a_{\mu,t_0-t_1}^{\text{LO}-\text{HVP}} = \alpha^2 \int_0^\infty dt \ K(tm_\mu) \ W_{t_0-t_1}(t) \ G_{1\gamma \text{I}}(t) \ ,$ where $K(tm_\mu)$ is a known kinematic function [1–4], and $W_{t_0-t_1}(t)$ is the smooth window function [5] restricting the in- tegral within the Euclidean time range between t_0 and t_1 . We focus on $a_{\mu,04-10}^{\text{LO}-\text{HVP}}$ and $a_{\mu,28-\infty}^{\text{LO}-\text{HVP}}$ [6], the windows extending respectively from 0.4 fm to 1.0 fm, and from 2.8 fm to infinity.	$w = \exp\left[-\frac{1}{2}\left(\chi^2 + 2n_{\text{par}} - n_{\text{data}}\right)\right],$ where n_{par} is the number of parameters in the fit, and the number of data points n_{data} accounts for the inclusion of different numbers of lattice spacings. Other systematics are assigned with flat weighting. From these inputs we construct a probability distribution function (PDF) for the observable Y $\text{PDF}(Y) = \sum_{i=1}^{N} \frac{w_{ia} \cdot \mathcal{N}(y_{ia}, \sigma_{ia}; Y)}{\mathcal{N}(y_{ia}, \sigma_{ia}; Y)}$	• As shown in the following Figure, the determinations of $a_{\mu,28-\infty}$ obtained using the $\pi^+\pi^-$ spectra measured by BaBar, KLOE, CMD-3 and in τ decays, are entirely consistent. The reason is that the tail contribution is dominated by the low-mass part of the spectrum, below the ρ peak, where all four measurements are in good agreement.

Continuum extrapolation

We perform global fits to the lattice spacing and quark mass dependence.

Lattice spacing dependence. The naive a^2 -like behaviour is modified to $\alpha_s^n a^2$ by anomalous dimensions of operators in the Symanzik effective theory [8], where α_s is the strong coupling at the scale of the lattice spacing. To account for this uncertainty, we use two types of fits:

- $A(a^2)$: Conventional polynomial in a^2/w_0^2 .
- $A'(\Delta_{KS})$: Scaling of staggered taste violation parameter Δ_{KS} is compatible to $\alpha_s^n a^2$ with n=3 \longrightarrow use polynomials of $\Delta_{KS} w_0^2$.

Quark mass dependence. The deviation from the physical light and strange quark mass is described by the variables

 $X_{l} = \hat{M}^{2} w_{0}^{2} - \left[\hat{M}^{2} w_{0}^{2}\right]_{\text{phys}} \text{ and } X_{s} = M_{ss}^{2} w_{0}^{2} - \left[M_{ss}^{2} w_{0}^{2}\right]_{\text{phys}},$

where $M^2 = \frac{1}{2} \left(M_{uu}^2 + M_{dd}^2 \right)$ and "phys" denotes the physical values taken from [7].

Putting together, the global fit function is

 $Y = A(a^{2}) + A'(\Delta_{KS}) + B(a^{2})X_{l} + C(a^{2})X_{s} ,$

 $\sum_{b} w_{ib} \cdot \sum_{j} 1$

which includes both statistical and systematic variations. The weight w_{ia} corresponds to a systematics variation, whose flat weighted component is labelled by i, while its AIC weighted component is labelled by a. The statistical variations are assumed to follow a normal distribution, i.e. $\mathcal{N}(y,\sigma;Y)$ is a normal PDF with mean y and standard deviation σ .

Central value and error. The central value of Y is defined by the median of the constructed PDF. The lower and upper total errors are defined by quantiles of the corresponding cumulative distribution function (CDF)

• Standard 1σ : 15.87% and 84.13%.

• Half of standard 2σ : 2.28 % and 97.72 %.

Conservative estimate: take larger of these.

Combining distributions. In order to obtain the physical value of an observable Y, the physical values of w_0 and M_{ss} are included as inputs using the procedure^a:

- 1. First we perform the analysis for Y at two fixed values of w_0 and two fixed values of M_{ss} , given by the edges of the central one-sigma bands of their distributions: Y_k with $k=1,\ldots 4.$
- 2. Take a random selection for the systematic ingredients shared by Y, w_0 and M_{ss} .
- 3. Make a random selection for the remaining independent ingredients with a probability given by

$$D(i, a) = w_i$$

• We have checked that the data-driven contribution to a_{μ} from $t \ge 2.8 \,\mathrm{fm}$ is entirely compatible with our lattice calculation.

• The total uncertainty on our average of the data-driven $a_{\mu,28-\infty}$ is 0.26 in our 10⁻¹⁰ units, a number that must be compared to our total uncertainty of 3.3 on a_{μ} . Thus its impact on the uncertainty of our final result for a_{μ} is completely negligible.

Reasons for the choice of $t_{\rm cut} = 2.8$ fm:

• Choosing to start the data-driven tail above $t = 2.8 \,\mathrm{fm}$ guarantees that the lattice contribution accounts for over

where Y is one of our dimensionless target observables. In the fit function we have the variations:

• A and A': Two scenarios: Either A can be linear, quadratic or cubic in a^2 and A'is set to zero,

or A' can be linear, quadratic or cubic in Δ_{KS} and Ais set to zero.

- B and C: both constant and linear polynomials in a^2 .
- Omit between zero and four of the coarsest lattice spacings (out of a total of seven) from the fits. Include at least one more lattice spacings than number of coefficients in A or A', and two more than in B or C.

 $P(i,a) = \frac{1}{\sum_{b} w_{ib} \sum_{j} 1} \, .$

independently for w_0 and M_{ss} .

- 4. Perform a bilinear interpolation of the fit values and their corresponding χ^2 values from the Y_k obtained at fixed values of w_0 and M_{ss} to the sampled values.
- 5. Compute the weights corresponding to the interpolated χ^2 values and perform the above importance-sampling once more to obtain the desired sample Y^r .

After repeating the above procedure $N_R = 10^6$ times, we obtain the distribution of Y with the uncertainties of the physical values of w_0 and M_{ss} included.

^aA similar sampling technique was recently proposed in Ref. [9].

Intermediate window

Figure 1: Representative continuum extrapolations of the interme-Figure 2: Left: PDF including both statistical and systematic varidiate window between 0.4 fm and 1.0 fm, as a function of a^2 (left), ations. The median is given by the blue vertical line, the $1\sigma/2\sigma$ error and Δ_{KS} (right). The data points are shifted to the physical point band is shown with green/yellow color. *Right:* A comparison with other lattice results in the literature [7, 10–16], and a recent pure using the B and C coefficients. data-driven computation from Benton et al [17].

95% of our result for a_{μ} .

- Beyond reducing the uncertainty on $a_{\mu,28-\infty}$ by an order of magnitude, the use of a data-driven tail reduces the finite-volume correction that must be applied to the lattice result by a factor of 2 and the associated uncertainty by even more.
- For these large times the data-driven determinations of $a_{\mu,28-\infty}$ agree very well.

The computation is performed following the approach of Ref. [18]. The measurements of the $\pi^+\pi^-$ spectrum by BaBar [19, 20], KLOE [21–24], CMD-3 [25] and via hadronic τ decays [26, 27] are considered separately. Outside their centerof-mass energy ranges and for other hadronic channels, the data from each experiment are complemented by the combined experimental and perturbative QCD results compiled in Ref. [27, 28], with a full treatment of uncertainties and correlations. Then the HVPTools framework [28–31] is used to Laplace transform these four spectra into the corresponding Euclidean-time correlators, which are subsequently integrated to give the four data-driven results for $a_{\mu,28-\infty}$. Altogether, we obtain

$a_{\mu,28-\infty} = 27.59(17)(9)[26]$ and $a_{\mu,28-35} = 18.12(11)(5)[16]$

for our tail-related window results in the data-driven approach. The first error comes from the weighted average procedure of different experiments and includes a PDG-style error rescaling. The second error is the additional uncertainty from including or not including the τ data set. The third, conservative total error is the first two added linearly.

References

 B. e. Lautrup, A. Peterman and E. de Rafael, Phys. Rept. 3 (1972), 193-259 E. de Rafael, Phys. Lett. B 322 (1994), 239-246 [arXiv:hep-ph/9311316]. T. Blum, Phys. Rev. Lett. 91 (2003), 052001 [arXiv:hep-lat/0212018]. D. Bernecker and H. B. Meyer, Eur. Phys. J. A 47 (2011), 148 [arXiv:1107.4388]. T. Blum et al. [RBC and UKQCD], Phys. Rev. Lett. 121 (2018) no.2, 022003 [arXiv:1801.07224]. A. Boccaletti, S. Borsanyi, et al. [arXiv:2407.10913]. S. Borsanyi, Z. Fodor, et al. Nature 593 (2021) no.7857, 51-55 [arXiv:2002.12347]. N. Husung, P. Marquard and R. Sommer, Eur. Phys. J. C 80 (2020) no.3, 200 [arXiv:1912.08498]. P. Boyle, F. Erben, et al. [arXiv:2406.19193]. C. Lehner and A. S. Meyer, Phys. Rev. D 101 (2020), 074515 [arXiv:2003.04177]. G. Wang et al. [chiQCD], Phys. Rev. D 107 (2023) no.3, 034513 [arXiv:2204.01280]. C. Aubin, T. Blum, M. Golterman and S. Peris, Phys. Rev. D 106 (2022) no.5, 054503 [arXiv:2204.12256]. M. Cè, A. Gérardin, et al. Phys. Rev. D 106 (2022) no.11, 114502 [arXiv:2206.06582]. C. Alexandrou et al. [Extended Twisted Mass], Phys. Rev. D 107 (2023) no.7, 074506 [arXiv:2206.15084]. A. Bazavov et al. [Fermilab Lattice, HPQCD, and MILC], Phys. Rev. D 107 (2023) no.11, 114514 [arXiv:2301.08274]. T. Blum et al. [RBC and UKQCD], Phys. Rev. D 108 (2023) no.5, 054507 [arXiv:2301.08696]. G. Benton, D. Boito, M. Golterman, A. Keshavarzi, K. Maltman and S. Peris, Phys. Rev. Lett. 131 (2023) no.2, 0254 [arXiv:2304.0254]. 	 [18] M. Davier, A. Hoecker, A. M. Lutz, B. Malaescu and Z. Zhang, Eur. Phys. J. C 84 (2024), 721 [arXiv:2312.02053]. [19] B. Aubert et al. [BaBar], Phys. Rev. Lett. 103 (2009), 231801 [arXiv:0908.3589]. [20] J. P. Lees et al. [BaBar], Phys. Rev. D 86 (2012), 032013 [arXiv:1205.2228]. [21] F. Ambrosino et al. [KLOE], Phys. Lett. B 670 (2009), 285-291 [arXiv:0809.3950]. [22] F. Ambrosino et al. [KLOE], Phys. Lett. B 700 (2011), 102-110 [arXiv:1006.5313]. [23] D. Babusci et al. [KLOE], Phys. Lett. B 720 (2013), 336-343 [arXiv:1212.4524]. [24] A. Anastasi et al. [KLOE-2], JHEP 03 (2018), 173 [arXiv:1711.03085]. [25] F. V. Ignatov et al. [CMD-3], Phys. Rev. D 109 (2024) no.11, 112002 [arXiv:2302.08834]. [26] M. Davier, A. Hoecker, et al. Eur. Phys. J. C 66 (2010), 127-136 [arXiv:0906.5443]. [27] M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan and Z. Zhang, Eur. Phys. J. C 74 (2014) no.3, 2803 [arXiv:1312.1501]. [28] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 66 (2010), 1-9 [arXiv:0908.4300]. [30] M. Davier, A. Hoecker, B. Malaescu, C. Z. Yuan and Z. Zhang, Eur. Phys. J. C 66 (2010), 1-9 [arXiv:0908.4300]. [30] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 71 (2011), 1515 [erratum: Eur. Phys. J. C 72 (2012), 1874] [arXiv:1010.4180]. [31] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 71 (2011), 1515 [erratum: Eur. Phys. J. C 72 (2012), 1874] [arXiv:1010.4180].
251803 [arXiv:2306.16808].	[31] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 77 (2017) no.12, 827 [arXiv:1706.09436].