
Computation of window quantities in aLO-HVP
µ

Bálint C. Tótha,b for the Budapest–Marseille–Wuppertal collaboration
a Department of Physics, University of Wuppertal, Gaussstrasse 20, D-42119, Germany
b Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany

Window observables
We are computing several window observables to aLO−HVP

µ .
They are obtained through a weighted integral of the one-
photon-irreducible, two-point function G1γI(t) of the quark
electromagnetic current:

aLO−HVP
µ,t0−t1 = α2

∫ ∞
0

dt K(tmµ) Wt0−t1(t) G1γI(t) ,

where K(tmµ) is a known kinematic function [1–4], and
Wt0−t1(t) is the smooth window function [5] restricting the in-
tegral within the Euclidean time range between t0 and t1. We
focus on aLO−HVP

µ,04−10 and aLO−HVP
µ,28−∞ [6], the windows extending

respectively from 0.4 fm to 1.0 fm, and from 2.8 fm to infinity.

Distribution of observables
AIC/flat weights. For a given observable, to systematics
related to the fit function and lattice spacing cuts we assign
a weight using the Akaike Information Criterion (AIC) in a
modified version as derived in Ref. [7]:

w = exp

[
−1

2

(
χ2 + 2npar − ndata

)]
,

where npar is the number of parameters in the fit, and the num-
ber of data points ndata accounts for the inclusion of different
numbers of lattice spacings. Other systematics are assigned
with flat weighting. From these inputs we construct a proba-
bility distribution function (PDF) for the observable Y

PDF(Y ) =
∑
i,a

wia · N (yia, σia;Y )∑
b wib ·

∑
j 1

,

which includes both statistical and systematic variations. The
weight wia corresponds to a systematics variation, whose flat
weighted component is labelled by i, while its AIC weighted
component is labelled by a. The statistical variations are as-
sumed to follow a normal distribution, i.e. N (y, σ;Y ) is a nor-
mal PDF with mean y and standard deviation σ.
Central value and error. The central value of Y is defined
by the median of the constructed PDF. The lower and upper
total errors are defined by quantiles of the corresponding cu-
mulative distribution function (CDF)

• Standard 1σ: 15.87 % and 84.13 %.
• Half of standard 2σ: 2.28 % and 97.72 %.

Conservative estimate: take larger of these.
Combining distributions. In order to obtain the physical
value of an observable Y , the physical values of w0 and Mss

are included as inputs using the procedurea:

1. First we perform the analysis for Y at two fixed values of
w0 and two fixed values of Mss, given by the edges of the
central one-sigma bands of their distributions: Yk with
k = 1, . . . 4.

2. Take a random selection for the systematic ingredients
shared by Y , w0 and Mss.

3. Make a random selection for the remaining independent
ingredients with a probability given by

P (i, a) =
wia∑

b wib
∑
j 1

,

independently for w0 and Mss.

4. Perform a bilinear interpolation of the fit values and their
corresponding χ2 values from the Yk obtained at fixed
values of w0 and Mss to the sampled values.

5. Compute the weights corresponding to the interpolated
χ2 values and perform the above importance-sampling
once more to obtain the desired sample Y r.

After repeating the above procedureNR = 106 times, we obtain
the distribution of Y with the uncertainties of the physical
values of w0 and Mss included.

aA similar sampling technique was recently proposed in Ref. [9].
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Figure 1: Representative continuum extrapolations of the interme-
diate window between 0.4 fm and 1.0 fm, as a function of a2 (left),
and ∆KS (right). The data points are shifted to the physical point
using the B and C coefficients.
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Figure 2: Left: PDF including both statistical and systematic vari-
ations. The median is given by the blue vertical line, the 1σ/2σ error
band is shown with green/yellow color. Right: A comparison with
other lattice results in the literature [7, 10–16], and a recent pure
data-driven computation from Benton et al [17].

Continuum extrapolation
We perform global fits to the lattice spacing and quark mass
dependence.

Lattice spacing dependence. The naive a2-like behaviour
is modified to αns a2 by anomalous dimensions of operators in
the Symanzik effective theory [8], where αs is the strong cou-
pling at the scale of the lattice spacing. To account for this
uncertainty, we use two types of fits:

• A(a2): Conventional polynomial in a2/w2
0.

• A′(∆KS): Scaling of staggered taste violation parame-
ter ∆KS is compatible to αns a2 with n = 3
−→ use polynomials of ∆KSw

2
0.

Quark mass dependence. The deviation from the physical
light and strange quark mass is described by the variables

Xl = M̂2w2
0−
[
M̂2w2

0

]
phys

and Xs = M2
ssw

2
0−
[
M2
ssw

2
0

]
phys

,

where M̂2 = 1
2

(
M2
uu +M2

dd

)
and “phys” denotes the physical

values taken from [7].

Putting together, the global fit function is

Y = A(a2) +A′(∆KS) +B(a2)Xl + C(a2)Xs ,

where Y is one of our dimensionless target observables. In the
fit function we have the variations:

• A and A′: Two scenarios:
Either A can be linear, quadratic or cubic in a2 and A′
is set to zero,
or A′ can be linear, quadratic or cubic in ∆KS and A
is set to zero.

• B and C: both constant and linear polynomials in a2.

• Omit between zero and four of the coarsest lattice spac-
ings (out of a total of seven) from the fits. Include at least
one more lattice spacings than number of coefficients in
A or A′, and two more than in B or C.
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Long-distance contributions
Although the vast majority of our final result (over 95%) comes
directly from lattice simulations, we replaced the lattice calcu-
lation of the contribution to aµ from G(t) above t ≥ 2.8 fm by
a state-of-the-art, data-driven determination.

• As shown in the following Figure, the determinations of
aµ,28−∞ obtained using the π+π− spectra measured by
BaBar, KLOE, CMD-3 and in τ decays, are entirely con-
sistent. The reason is that the tail contribution is dom-
inated by the low-mass part of the spectrum, below the
ρ peak, where all four measurements are in good agree-
ment.
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• We have checked that the data-driven contribution to aµ
from t ≥ 2.8 fm is entirely compatible with our lattice
calculation.
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• The total uncertainty on our average of the data-driven
aµ,28−∞ is 0.26 in our 10−10 units, a number that must
be compared to our total uncertainty of 3.3 on aµ. Thus
its impact on the uncertainty of our final result for aµ is
completely negligible.

Reasons for the choice of tcut = 2.8 fm:

• Choosing to start the data-driven tail above t = 2.8 fm
guarantees that the lattice contribution accounts for over
95% of our result for aµ.

• Beyond reducing the uncertainty on aµ,28−∞ by an order
of magnitude, the use of a data-driven tail reduces the
finite-volume correction that must be applied to the lat-
tice result by a factor of 2 and the associated uncertainty
by even more.

• For these large times the data-driven determinations of
aµ,28−∞ agree very well.

The computation is performed following the approach of
Ref. [18]. The measurements of the π+π− spectrum by
BaBar [19,20], KLOE [21–24], CMD-3 [25] and via hadronic τ
decays [26, 27] are considered separately. Outside their center-
of-mass energy ranges and for other hadronic channels, the
data from each experiment are complemented by the com-
bined experimental and perturbative QCD results compiled in
Ref. [27, 28], with a full treatment of uncertainties and cor-
relations. Then the HVPTools framework [28–31] is used to
Laplace transform these four spectra into the corresponding
Euclidean-time correlators, which are subsequently integrated
to give the four data-driven results for aµ,28−∞.
Altogether, we obtain

aµ,28−∞ = 27.59(17)(9)[26] and aµ,28−35 = 18.12(11)(5)[16]

for our tail-related window results in the data-driven approach.
The first error comes from the weighted average procedure of
different experiments and includes a PDG-style error rescaling.
The second error is the additional uncertainty from including
or not including the τ data set. The third, conservative total
error is the first two added linearly.


