Computation of window quantities in a LO-HVP $\boldsymbol{\mu}$

Bálint C. Tóth^{a,b} for the Budapest–Marseille–Wuppertal collaboration

^a Department of Physics, University of Wuppertal, Gaussstrasse 20, D-42119, Germany b Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany

> which includes both statistical and systematic variations. The weight w_{ia} corresponds to a systematics variation, whose flat weighted component is labelled by i , while its AIC weighted component is labelled by a . The statistical variations are assumed to follow a normal distribution, i.e. $\mathcal{N}(y, \sigma; Y)$ is a normal PDF with mean y and standard deviation σ .

Central value and error. The central value of Y is defined by the median of the constructed PDF. The lower and upper total errors are defined by quantiles of the corresponding cumulative distribution function (CDF)

• Standard 1σ : 15.87% and 84.13% .

• Half of standard 2σ : 2.28% and 97.72% .

Combining distributions. In order to obtain the physical value of an observable Y, the physical values of w_0 and M_{ss} are included as inputs using the procedure^{a}:

- 1. First we perform the analysis for Y at two fixed values of w_0 and two fixed values of M_{ss} , given by the edges of the central one-sigma bands of their distributions: Y_k with $k=1,\ldots 4.$
- 2. Take a random selection for the systematic ingredients shared by Y, w_0 and M_{ss} .
- 3. Make a random selection for the remaining independent ingredients with a probability given by

 $P(i,a) = \frac{1}{\sum_{i=1}^{n} a_i}$ $_b$ $w_{ib}\sum_j 1$,

independently for w_0 and M_{ss} .

- 4. Perform a bilinear interpolation of the fit values and their corresponding χ^2 values from the Y_k obtained at fixed values of w_0 and M_{ss} to the sampled values.
- 5. Compute the weights corresponding to the interpolated χ^2 values and perform the above importance-sampling once more to obtain the desired sample Y^r .

After repeating the above procedure $N_R = 10^6$ times, we obtain the distribution of Y with the uncertainties of the physical values of w_0 and M_{ss} included.

^aA similar sampling technique was recently proposed in Ref. [9].

Conservative estimate: take larger of these.

Lattice spacing dependence. The naive a^2 -like behaviour is modified to α_s^n $sⁿa²$ by anomalous dimensions of operators in the Symanzik effective theory [8], where α_s is the strong coupling at the scale of the lattice spacing. To account for this uncertainty, we use two types of fits:

- $A(a^2)$: Conventional polynomial in a^2/w_0^2 .
- $A'(\Delta_{KS})$: Scaling of staggered taste violation parameter Δ_{KS} is compatible to α_s^n $\int_s^n a^2$ with $n=3$ \longrightarrow use polynomials of $\Delta_{KS}w_0^2$ $\frac{2}{0}$.

where $\hat{M}^2 = \frac{1}{2}$ 2 $\left(M_{uu}^2 + M_{dd}^2\right)$ and "phys" denotes the physical values taken from [7].

Putting together, the global fit function is

 $Y = A(a^2) + A'(\Delta_{KS}) + B(a^2)X_l + C(a^2)X_s$

 i,a b $\displaystyle j$

where Y is one of our dimensionless target observables. In the fit function we have the variations:

 \bullet A and A' : Two scenarios: Either A can be linear, quadratic or cubic in a^2 and A' is set to zero,

or A' can be linear, quadratic or cubic in Δ_{KS} and A is set to zero.

- B and C: both constant and linear polynomials in a^2 .
- Omit between zero and four of the coarsest lattice spacings (out of a total of seven) from the fits. Include at least one more lattice spacings than number of coefficients in A or A' , and two more than in B or C.

$$
D(i, c) = w_{ia}
$$

Intermediate window

95% of our result for a_{μ} .

- Beyond reducing the uncertainty on $a_{\mu,28-\infty}$ by an order of magnitude, the use of a data-driven tail reduces the finite-volume correction that must be applied to the lattice result by a factor of 2 and the associated uncertainty by even more.
- For these large times the data-driven determinations of $a_{\mu,28-\infty}$ agree very well.

Figure 1: Representative continuum extrapolations of the intermediate window between 0.4 fm and 1.0 fm, as a function of a^2 (left), and Δ_{KS} (right). The data points are shifted to the physical point using the B and C coefficients. Figure 2: Left: PDF including both statistical and systematic variations. The median is given by the blue vertical line, the $1\sigma/2\sigma$ error band is shown with green/yellow color. Right: A comparison with other lattice results in the literature [7, 10–16], and a recent pure data-driven computation from Benton et al [17].

Continuum extrapolation

We perform global fits to the lattice spacing and quark mass dependence.

> • We have checked that the data-driven contribution to a_{μ} from $t \geq 2.8$ fm is entirely compatible with our lattice calculation.

Quark mass dependence. The deviation from the physical light and strange quark mass is described by the variables

 $X_l = \hat M^2 w_0^2$ $\hat{O}^2 - [\hat{M}^2 w_0^2]$ $\left[\begin{smallmatrix} 2 \ 0 \end{smallmatrix} \right]_\text{phys} \quad \text{and} \quad X_s = M_{ss}^2 w_0^2$ $_0^2$ $\left[M_{ss}^2 w_0^2 \right.$ $^2_0\big]_{\rm phys}$,

> • Choosing to start the data-driven tail above $t = 2.8$ fm guarantees that the lattice contribution accounts for over

References

• The total uncertainty on our average of the data-driven $a_{\mu,28-\infty}$ is 0.26 in our 10^{-10} units, a number that must be compared to our total uncertainty of 3.3 on a_{μ} . Thus its impact on the uncertainty of our final result for a_{μ} is completely negligible.

Reasons for the choice of $t_{\text{cut}} = 2.8$ fm:

The computation is performed following the approach of Ref. [18]. The measurements of the $\pi^+\pi^-$ spectrum by BaBar [19, 20], KLOE [21–24], CMD-3 [25] and via hadronic τ decays [26, 27] are considered separately. Outside their centerof-mass energy ranges and for other hadronic channels, the data from each experiment are complemented by the combined experimental and perturbative QCD results compiled in Ref. [27, 28], with a full treatment of uncertainties and correlations. Then the HVPTools framework [28–31] is used to Laplace transform these four spectra into the corresponding Euclidean-time correlators, which are subsequently integrated to give the four data-driven results for $a_{\mu,28-\infty}$. Altogether, we obtain

$a_{\mu,28-\infty}=27.59(17)(9)[26] \quad \text{and} \quad a_{\mu,28-35}=18.12(11)(5)[16]$

for our tail-related window results in the data-driven approach. The first error comes from the weighted average procedure of different experiments and includes a PDG-style error rescaling. The second error is the additional uncertainty from including or not including the τ data set. The third, conservative total error is the first two added linearly.