

Contribution ID: 209

Type: Poster

Opening up a Coulomb Phase in Z_3 Gauge Theory

Tuesday, 30 July 2024 17:15 (1 hour)

The investigation of \mathbb{Z}_N lattice gauge theories was initially undertaken to gain insights into the phase structure of lattice gauge theories. It is established that for N < 5, these theories exhibit two phases: an ordered, deconfining phase at low temperatures and a disordered, confining phase at high temperatures. For $N \ge 5$, an additional Coulomb phase emerges at intermediate temperatures. In their recent work, Nguyen, Sulejmanpasic, and Ünsal gave a theoretical argument that even for N < 5, the \mathbb{Z}_N theory can be deformed to reveal an intermediate phase. In our research, we propose a deformation of the \mathbb{Z}_3 theory by suppressing monopoles and provide numerical evidence suggesting the appearance of a phase with an emergent U(1) symmetry, not present in the undeformed theory.

Primary author: LANNERS, David (Durham University)

Co-authors: Prof. GIANSIRACUSA, Jeffrey (Durham University); Dr SULEJMANPASIC, Tin (Durham University)

Presenter: LANNERS, David (Durham University)

Session Classification: Poster session and reception

Track Classification: Vacuum Structure and Confinement