

Finite-temperature critical point of heavy-quark QCD on large lattices

WHOT-QCD Collab: K. Kanaya (U. Tsukuba), R. Ashikawa (Osaka U.), S. Ejiri (Niigata U.), M. Kitazawa (Kyoto U.), H. Sugawara (Niigata U.)

0. QCD in the heavy-quark region SU(3) YM $N_F = 2 \text{ QCD}$ 2nd O(4) Properties around the physical point may be affected by nearby **C**ritical **P**oints. CP in the light-quark side turned out to be more distant \Rightarrow CP in the heavy-quark side m_s Phys. $N_F = 1 \text{ QCD}$ Binder cumulant analysis for precise CP \Rightarrow large lattices required for FSS [1] $N_{F} = 2 + 1 \text{ QCD}$ \Rightarrow Hopping Parameter Expansion (heavy-quark expansion) to simulate large lattices: pHB+OR à la pure YM applicable $S_{\rm LO} \sim \square + (())$ m_{μ} $S_{\rm NLO} \sim \square + \square + \square + \square + \square$ incorporated by reweighting total cost \approx qQCD [1] \Rightarrow

I. Effective incorporation of high-order terms of HPE

Convergence study of HPE \Rightarrow NLO sufficient down to CP at Nt=4, but higher orders needed at Nt≥6 [2]. Incorporate high-orders using strong linear correlation among different order terms of HPE:

Scatter plot of Polyakov-loop type operators of HPE at Nt=6 [3].

2. Simulations

Binder cumulant $B_4 = \frac{\langle \text{Re}\hat{\Omega}^4 \rangle_c + 3}{\langle \text{Re}\hat{\Omega}^2 \rangle_c^2}$

• eff.[LO] method [2] $\int_{\text{up to }(n_W, n_L)\text{th}} \int_{\text{Incorporate NLO and higher orders by shifting the couplings in <math>S_{\text{LO}}$.

eff.[NLO] method [3]

Incorporate NNLO and higher orders by shifting the couplings in S_{NLO} . Superior to eff.[LO] \Leftarrow correlation stronger with smaller order-differences.

Test by the phase diagram at Nt=6 [3]:

- Transition line and CP with eff.[LO/NLO] shift from NLO \Rightarrow NNLO and highers important at Nt≥6.
- Dependence on the truncation order of HPE in eff.[LO/ NLO] \Rightarrow convergence of HPE for $(n_W, n_L) \ge (10, 14)$

II = 12, 10, 9 Nt = 4

LT = 12 - 8

Nt = 8

0.0010

1.8

1.7

LT=9

0.0052

We adopt eff.[LO/NLO] with $(n_W, n_L) = (10, 14)$ at Nt=6.

 $S_{\rm g} + S_{\rm LO} = -6N_{\rm site}\beta^*\hat{P} - \lambda N_s^3 \text{Re}\hat{\Omega}, \ \beta^* = \beta + 16N_cN_{\rm f}\kappa^4, \ \lambda = 2^{N_t+2}N_cN_{\rm f}\kappa^{N_t}, \ \hat{\Omega} = \text{Polyakov loop}$

 \leftarrow multi-point reweighting to vary coupling parameters continuously.

□ $Nt = 8, LT = Ns/Nt = 6-15, eff.[LO/NLO] \Rightarrow LT \ge 10$ required [4]

Results at Nt=6 [3]:

- Larger violation of FSS on finer lattice at $LT \leq 9$. \Rightarrow larger LT required.
- FSS fit $B_4 = b_4 + c(\lambda \lambda_c)(LT)^{-1/\nu}$ works well with $LT \ge 10$.
- $\Rightarrow \nu$: consistent with 0.630 of Z(2), but b_4 : 2σ discrepant from 1.604 of Z(2).

3. Toward the continuum limit of CP in physical units

Results of (β_c, κ_c) at Nt=4, 6, 8, combined with $m_{PS}a$ at T=0 at the same (β_c, κ_c) estimated from previous studies, we find $m_{PS}/T_c \approx 16.30(3)$, 18.04(4), 17.2(2) (preliminary) at Nt=4, 6, 8, respectively. \Rightarrow Nt-dep. (a-dep.) looks mild.

Publications:

I. A. Kiyohara, M. Kitazawa, S. Ejiri, K. Kanaya, Phys.Rev.D 104, 1144509 (2021)
2. N. Wakabayashi, S. Ejiri, K.Kanaya, M. Kitazawa, PTEP 2022, 033B05 (2022)
3. R.Ashikawa, M. Kitazawa, S. Ejiri, K. Kanaya, arXiv:2407.09156 (2024)
4. H. Sugawara, E. Ejiri, K. Kanaya, M. Kitazawa., *in preparation*

