3. Toward the continuum limit of CP in physical units

 R esults of (β_c, κ_c) at $Nt{=}4, 6, 8$, combined with $m_{\rm PS}a$ at $T{=}0$ at the same (β_c, κ_c) estimated from previous studies, we find $m_{\rm PS}/T_c\approx 16.30(3),\,18.04(4),\,17.2(2)$ (preliminary) at Nt=4, 6, 8, respectively. \Rightarrow **Nt-dep. (a-dep.) looks mild.**

Finite-temperature critical point of heavy-quark QCD on large lattices

0. QCD in the heavy-quark region $N_F = 2$ QCD $SU(3)$ YM $\begin{bmatrix} 2nd \\ O(4) \end{bmatrix}$ Properties around the physical point may be affected by nearby **C**ritical **P**oints. CP in the light-quark side turned out to be more distant \Rightarrow CP in the heavy-quark side ***** Phys. $N_F = 1$ QCD Binder cumulant analysis for precise $\text{CP}\ \Rightarrow$ large lattices required for FSS [1] N_F = 2+1 QCD **H**opping **P**arameter **E**xpansion (heavy-quark expansion) to simulate large lattices: ⇒ $S_{\text{LO}} \sim \Box + \bigcirc \overline{\bigcirc}$ \bigcirc \Box \bigcirc pHB+OR *à la* pure YM applicable $m_{\mu a}$ $S_{\text{NLO}} \sim$ $\boxed{\leftarrow}$ + $\boxed{\leftarrow}$ + $\boxed{\leftarrow}$ + $\boxed{\leftarrow}$ incorporated by reweighting \rightarrow total cost \approx qQCD $\lceil |\cdot| \rceil$

WHOT-QCD Collab**:** K. Kanaya (*U. Tsukuba*), R. Ashikawa (*Osaka U.*), S. Ejiri (*Niigata U*.), M. Kitazawa (*Kyoto U.*), H. Sugawara (*Niigata U.*)

LATTICE 2024

1. Effective incorporation of high-order terms of HPE

Publications:

1. A. Kiyohara, M. Kitazawa, S. Ejiri, K. Kanaya, Phys.Rev.D 104, 1144509 (2021) 2. N. Wakabayashi, S. Ejiri, K.Kanaya, M. Kitazawa, PTEP 2022, 033B05 (2022) 3. R. Ashikawa, M. Kitazawa, S. Ejiri, K. Kanaya, arXiv:2407.09156 (2024) 4. H. Sugawara, E. Ejiri, K. Kanaya, M. Kitazawa., *in preparation*

2. Simulations

 $B_4 =$ $\langle \text{Re}\hat{\Omega}^4 \rangle_c + 3$ $\langle \text{Re}\hat{\Omega}^2 \rangle_c^2$

Convergence study of HPE \implies NLO sufficient down to CP at *Nt*=4, but higher orders needed at *Nt*≥6 [2]. Incorporate high-orders using strong linear correlation among different order terms of HPE:

eff.[LO] method [2] D $\mu_{\mathcal{V}}$ up to (n_W, n_L) th Incorporate NLO and higher orders by shifting the couplings in S_{LO} .

-
-
-

 0.01

 0.00

 0.008

 $\frac{1}{1}$ 0.00

 $\stackrel{*}{\circledcirc}^{\stackrel{*}{\circledast}}$ 0.006

 0.00

 0.00

 0.003

 $N_{\rm f}=2, ~N_{\rm t}=6$

0.0006

0.0007

 0.0008

 0.084 0.086 0.088 0.090

Scatter plot of Polyakov-loop type operators of HPE at *Nt*=6 [3].

eff.[NLO] method [3]

Incorporate NNLO and higher orders by shifting the couplings in $S_{\rm NLO}$. Superior to eff.[LO] \Leftarrow correlation stronger with smaller order-differences.

Test by the phase diagram at *Nt*=6 [3]:

- **The Transition line and CP with eff.[LO/NLO] shift from NLO** NNLO and highers important at *Nt*≥6. ⇒
- Dependence on the truncation order of HPE in eff.[LO/ NLO] \Rightarrow convergence of HPE for $(n_W, n_L) \ge (10, 14)$

We adopt eff. [LO/NLO] with $(n_W, n_L) = (10, 14)$ at $Nt=6$.

 $S_g + S_{LO} = -6N_{site}\beta^*\hat{P} - \lambda N_s^3 \text{Re}\hat{\Omega}, \ \beta^* = \beta + 16N_cN_f\kappa^4, \ \lambda = 2^{N_t+2}N_cN_f\kappa^{N_t}, \ \hat{\Omega} = \text{Polyakov loop}$

Binder cumulant $B_4 = \frac{\sqrt{2\pi}}{2}$ \Leftarrow multi-point reweighting to vary coupling parameters continuously.

 $Nt = 4$, $LT = Ns/Nt = 6 - 12$, NLO $\Rightarrow LT \ge 9$ required for FSS [1] *Nt* = 6, *LT*=*Ns*/*Nt*=6-18, eff.[LO/NLO] ⇒ *LT* ≥ 10 required [3]

Nt = 8, *LT*=*Ns*/*Nt*=6-15, eff.[LO/NLO] \Rightarrow *LT* ≥ 10 required [4]

