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Introduction to Non-Hermitian Systems

Normally in quantum theory, we study Hermitian Hamiltonians, which lead to unitary time evolution. We
are interested in studying the effects of adding non-Hermitian portions to Hamiltonians,

Ĥ = Ĥ + iη̂, (1)

where both Ĥ and η̂ are Hermitian. Note that η̂ is not a perturbation, and may be of similar or even larger
size than Ĥ.

The time evolution of these Hamiltonians is non-unitary

M(t) = e−itĤ = etη̂e−itĤ , (2)

this means that the non-Hermitian portion of the Hamiltonian can drive growth or decay of states.

In this regime, we lose the notion of the eigenstates of the Hamiltonian being orthonormal. We
instead now have that the left and right eigenvectors are biorthonormal.

For further details on non-Hermitian quantum mechanics see Ref. [1].

Motivation for Studying Non-Hermitian Systems

By extending normal quantum mechanics to allow non-Hermitian Hamiltonians, we are offered a way to
study open systems, dissipation, and decay processes. This means that we can study systems that ex-
hibit features such as decoherence through loss to the environment or with apparatus. This prescription
offers possible improvement in our understanding of fields such as quantum optics, condensed matter,
and nuclear physics.

We are studying these imaginary potential systems to develop methodologies on quantum com-
puters for simulation when there is a sign problem classically, such as when there is a constant
background electric field.

Introduction to PT -Symmetry

Figure 1: Largest imaginary part of an eigenvalue from the
non-Hermitian QHO (Eq. 11). The phase is unbroken when
EI = 0 and broken when EI ̸= 0.

As a looser restriction on our system than
requiring Hermiticity, we instead enforce
PT -symmetry. This means that our Hamil-
tonian must remain invariant under simul-
taneous parity and time reversals. We can
check that our model exhibits this symme-
try by ensuring[

Ĥ,PT
]
= 0. (3)

We often study the two phases of this sys-
tem: unbroken and broken PT -symmetry.
In the unbroken phase λi ∈ R for all λi ∈
spec(Ĥ); this is broken when this is no
longer true. The points in parameter space
where the symmetry breaking occurs are known as exceptional points - here we have a coalition of eigen-
states. Another way we can ensure that our system has PT -symmetry is by seeing that the eigenvalues
appear in conjugate pairs in the broken phase.

Introduction to Quantum Computing

In our studies, we are particularly interested in variational quantum algorithms (VQAs), wherein we apply
entangling and parameterized rotational gates to our state and then calculate the expected value with
respect to some Hamiltonian. Typically this expected value is optimized using a classical routine. The
solution to our problem is encoded in the final state or output value. An example of a VQA is the Varia-
tional Quantum Eigensolver (VQE). The VQE works by breaking the Hamiltonian into Pauli strings, and
then calculating the expectation value of that particular string with respect to a variational state. We use
a classical optimizer to minimize a cost function comprised of these expectation values.

Variational Quantum Algorithm for Scanning the Spectrum of Non-
Hermitian Hamiltonians

The VQA for non-Hermitian systems was introduced in Ref. [2]. The algorithm centers around finding the
zero-variance points of the non-Hermitian Hamiltonian. We define the cost function to be

C = ⟨0|U†(θ)M(θ, E)U(θ)|0⟩, (4)

where
M(θ, E) = (M† − E∗) (H − E) . (5)

If we find θ∗ and E∗ such that C = 0, then

H [U(θ∗)|0⟩] = E∗ [U(θ∗)|0⟩] , (6)

and thus we have found an eigenpair of the Hamiltonian. With this setup, we find the right eigenstates; to
study the left eigenstates, we instead minimize a similar cost function C ′, where the operator is instead

M ′(θ, E) = (H − E) (M† − E∗). (7)

The results on this poster focus on the right-hand eigenvectors of the Hamitlonian. Similar work can be
done with respect to the lef-hand eigenvectors; we instead look at M ′ = (M − E)(M† − E∗)

The optimization of this cost function is carried out in two phases - these are defined depending
on which eigenpair you are looking for.

The groundstate (state with the smallest real part) allows us to study quantum phase transitions
and the spectralstate (the state with the largest imaginary component) shows when PT -symmetry is
broken.

Quantum Phase Transition

A quantum phase transition (QPT) is when we see a distinct change in the form of the groundstate. These
occur at zero temperature for an infinite system size. Due to technical limitations of quantum simulations,
we fall short of this - to help we impose periodic boundary conditions. The zero temperature require-
ment means that we can see the full effects by studying just the groundstate and do not need to build up
ensembles.

Non-Hermitian Ising Model

We have been studying a non-Hermitian variation of the transverse field Ising model, defined by the
Hamiltonian

Ĥ = −
n−1∑
j=0

ZjZj+1 −
n−1∑
j=0

[
Zj + iΓXj

]
, (8)

where Xj and Zj are the Pauli spin matrices acting on qubit j. This Hamiltonian is non-Hermitian for
Γ ̸= 0. We study the QPT of this system as we change Γ. We quantify this by measuring Mx on the found
groundstate,

Mx =
1

n

n−1∑
j=0

Xj. (9)

Figure 2: Absolute value of magnetization in X-direction over a change in imaginary field strength. These results were col-
lected using noisy state-vector simulations. Each data point is an average over four runs, on a five qubit system. These
simulations were run locally on my laptop.

Non-Hermitian Quantum Harmonic Oscillator

The Hamiltonian of the non-Hermitian quantum harmonic oscillator is given by

Ĥ =
p̂2

2
+
1

2
x̂2 + iΓx̂3, (10)

this Hamiltonian is non-Hermitian for Γ ̸= 0. After making use of fermionic ladder operators and the
Jordan-Wigner transformation, we can map this to a system of n-qubits as

Ĥ =

n−1∑
j=0

I − 1

2
Zj + i

Γ√
2
Xj

∏
k<j

Zk

 . (11)

We quantify the QPT of this system in a similar way to the Ising model, by measuring Mx on the found
groundstate.

Figure 3: Absolute value of magnetization in X-direction over a change in imaginary field strength. These results were col-
lected using noisy state-vector simulations. Each data point is an average over four runs, on a five qubit system. These
simulations were run locally on my laptop.

Conclusion and future work

In this work, we have explored the applicability of a variational quantum algorithm for simulating systems
that we cannot simulate effectively with usual Monte Carlo methods. We are porting our codes to HPC
and GPU based systems, so we can simulate larger systems. In the future, we hope to explore more
complex systems, in particular systems in a background electric field.
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