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What is HiRep?

HiRep allows flexible simulations of
higher representations of Wilson Fermions
with various actions and gauge groups
and a range of inverters and integrators.

Higher Representations

This is particularly important for enabling
evaluations of observables relevant to
phenomenological inputs for
Beyond-the-Standard-Model physics from
lattice field theory.

Computational Cost

Graphics Processing Units (GPUs) are to
date the most performant processing units
available. This is why we need lattice
software to run on GPUs.

Github repository

https://github.com/claudiopica/HiRep

Docs: https://claudiopica.github.io/HiRep/

Algorithmic Checks

We can test, whether the algorithm samples from
the correct distribution, by checking

– The independence of the plaquette of the step size in the
integration

– The Creutz equality, [1]

– The scaling of the Hamiltonian violations with the step size,
which for a 2nd-order Omelyan integrator [2] scales with

∆H ∼ δτ 4 .

– The behavior of the acceptance rate as a function of the
Hamiltonian violations, which follows an analytically known
relation asymptotically for high acceptance rates [3]
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Figure 1. Check of average plaquette and Creutz equality, figure from previous
work in [4]

Scaling to 1000 GPUs
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Figure 2. Weak and strong scaling of the Dirac operator on LUMI-G (AMD
MI250x).

We see almost perfect scaling up to 256 GPUs, with some loss
of efficiency for the 1024 GPU tests, which is likely due to the
dragonfly topology that connects nodes in groups of 124 nodes
and 992 GPUs.

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and
innovation program under the Marie Sk lodowska-Curie grant agreement 813942. Testing,
development, and benchmarking of this software was possible using resources on LUMI-G
provided by the Danish eInfrastructure Consortium under grant application number
DeiC-SDU-N5-2024055 and NVIDIA V100, A100, and H100 nodes provided by the UCloud
DeiC Interactive HPC system managed by the eScience Center at the University of Southern
Denmark.

SU(2) with two fermions in the adjoint
representation
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Figure 3. Distribution of real part of polyakov loops, normalized and
symmetrized by hand
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Figure 4. Finite-volume effects
of the average plaquette

For the value in [5], we observed
multiple metastable states for the aver-
age plaquette values. This finite-volume
effect vanishes for larger spatial extents
since the Polyakov loop distribution is no
longer broken in the finite spatial
extents.

Summary

We perform algorithmic and consistency checks on the recently
ported HiRep GPU code. We find consistency with previously
obtained results for SU(2) with two fermions in the adjoint
representation. A physical application of this code can be seen
during the talk [S. Martins, Friday, 14:35].
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