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Background

In a typical lattice simulations many quantities can be related to correlation functions through the spectral
decomposition

C (τ ) = ⟨O(τ )O(0)⟩ β→∞−−−−→
Nstate∑
n=0

Ane
−τEn. (1)

For simplicity we focus on energies En ≡ En − EΩ and overlap factors An from two-point correlators. A simple
approximation of the first energy is to compute the effective mass, meff = logC (τ−a)−logC (τ+a)/2a. This
requires to truncate the spectral decomposition after the first term introducing systematic uncertainties –
it neglects excited states. To provide a better estimate the data has to be analysed as a function of truncation
Nstate. Unfortunately, fitting a tower of exponentials is a difficult task and naive minimization routines are
likely to fail. Providing guidance to the fit is thus of utmost importance and a natural access point is Bayesian
fitting.

Bayes’ theorem allows to express the probability of found parameters Θ = {An,En}Nstate
n=0 – the posterior

distribution p (Θ|D) – given a data set to fit against D = {τ,C (τ )},

p (Θ|D) =
p (D|Θ) p (Θ)

p (D)
. (2)

This proportionality includes the (maximum) likelihood distribution p (D|Θ) ∼ e−χ2/2, and a-priori knowledge
on the parameters via the prior distribution p (Θ). For our purpose we can ignore the, normalizing, marginal
distribution p (D). From this simple expression we can identify the augmented χ2 that is minimized to find Θ,

χ2aug = χ2 + 2 log p (Θ) (3)

Now expressing prior knowledge on the parameters through Θ, σΘ allows to guide the fit effectively stabilizing
the minimization procedure. A word of caution, any fit that requires guidance to converge explicitly is biased!
For the Bayesian approach above, the strength of the bias can be handled by the σΘ and needs to be investigated
explicitly.

Typical choices of priors can come from analytical arguments, e.g. non-interacting solutions. However,
if these are not accessible one can use effective masses with hand picked ranges, e.g.

p (Θ = E0) = logN (meff, 0.5meff) . (4)

Model Averaging [1, 2, 3]

The truncation of the spectral decomposition (1) naturally induces a systematic uncertainty. There are many
ways of estimating how large this uncertainty should be. One way of including an uncertainty estimate into the
analysis is to perform model averaging under bootstrap. Given a set of models m,{

m =
(
Θ|Nstate

,D|[τs ,τe]
)}

, (5)

a model weight can be computed using the Akaike information criterion

ω(m) ∼ e−
1
2AIC(m), (6)

AIC(m) = χ2(aug) − 2|τe − τs| + 2|Θ|. (7)

A simple weighted average Θ̄(bst), on each bootstrap sample, determines a parameter estimate. Further, using
the usual bootstrap deviation over these estimates, σbstΘ , then quantifies an uncertainty including statistical and
model-systematic deviations.

Once a couple of models have been fitted, e.g. when a new state is introduced, one can use the results of the
model average as priors for the next fits. Typically, the uncertainty is increased compared to the bootstrap
deviation to weaken the prior.

Lattice QCD: The Nucleon

We compute nucleon correlators on one L3 × Nt = 243 × 64 ensemble at a lattice spacing of a ≈ 0.125 fm
using a tree-level Symanzik-improved gauge action and 2+1 flavor tree-level improved Wilson Clover fermions
coupling via 6-level stout-smearing [4].The ensemble parameters are

β aml ams mπ[MeV] mπL Nconf
3.3 −0.1265 −0.057 273(13) 4.15(20) 500

We measure only one smeared source on each configuration. The simple spectral decomposition of (1) is used
and the prior is determined by (4). The prior for the overlap is determined by the effective mass and C (τ/a = 7)
with 100% uncertainty. Higher states are fitted by iterative model averaging as described in the algorithm.
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Analysis Algorithm [5]
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Hubbard Model: Single Particle Spectrum of Perylene [5]

We simulate the single particle spectrum of Perylene described by the Hubbard model,

ĤHubbard = −1

2

∑
x ,y∈Λ

{
p̂
†
xK

xy p̂y − ĥ
†
xK

xy ĥy

}
+

U

2

∑
x∈Λ

ρ̂2x − µ
∑
x∈Λ

ρ̂x , (8)

as a function of chemical potential. This parameter scan includes about 2000 single particle correlators CΛi (τ ) =〈
p
†
Λi
(τ )pΛi

〉
to analyse. The data allows to fit forward and backward propagating states which we truncate

separately with (NL
state,N

R
state). Using the non-interacting model energies as a prior to the (1,1) state fits, and

all subsequent fits as indicated in the algorithm.
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