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Abstract

We simulate QCD with 3 quark flavours for the case of an external mag-

netic field and imaginary chemical potential in the temperature range of the

crossover. This poster clarifies how to match experimental conditions, i.e

bringing the system into strangeness neutrality as well as predicting the new

simulation parameters for runs with increasing imaginary chemical potential

by comparing different approaches.

Introduction

Using the method of lattice QCD dense strongly interacting systems (e.g see

[1]) a as well as such systems in external magnetic fields (e.g see [2]), which

has a critical endpoint (CEP) in the T − B−plane around B = [4 − 9]GeV2 [3],

have been well studied in the past. Physical systems such as magnetars or

as in non central heavy ion collisions (HIC) however are both dense and have

large magnetic fields. We want to study such systems to find a possible first

order connecting line between the CEP in the T − B− and the possible CEP in

the T − µ− Plane.

To match experimental conditions in e.g HIC we musst fulfill strangeness neu-

trality and isospin asymmetry, i.e

〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉 (1)

where 〈ni〉 represents the expectation value of the strange (S), charge (Q) or

baryon (B) number. The input variables of the simulation, i.e µ̂B,sim = µB
T
in-

troduces a strangeness to our physical system, which should be canceled by

µ̂S,sim. µ̂Q,sim has to be introduced due to the fact that we also simulate using

an external magnetic field. We will discuss the routine of extrapolating µ̂Q,sim

and µ̂S,sim for larger µ̂B from strangeness neutral points.

Strangeness Neutrality

Eq. (1) should be fullfilled, therefore the susceptibility χS should be 0. In gen-

eral we define the quark number susceptibilities in eq. (2)

χu,d,s
i,j,k =

TN
4−i−j−k
t

V

∂i+j+k logZ

(∂µu)i(∂µd)j(∂µs)k
, (2)

in which N
4−i−j−k
t makes the result dimensionless. By using

µu =
1

3
µB +

2

3
µQ µd =

1

3
µB − 1

3
µQ µs =

1

3
µB − 1

3
µQ − µS, (3)

we can calculate χS1. The result of the simulation at µ̂B = 3 iπ
8
where µ̂S and µ̂Q

were determinant by a linear extrapolation is shown in figure 1b.
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Figure 1. Values of χS1 from the measurements without correction for µ̂B = 3 iπ
8
.

We bring the measurements into strangeness neutrality by using a Taylor

expansion up to 2nd order*. With this we can calculate our observables in

strangeness neutrality. For the χB1 we plot the difference from the naive and

the strangeness neutral case in figure (2)
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Figure 2. χB1 for the naive and strangeness neutral measurement at 0.5GeV2 with µ̂B = 3 iπ
8

aNote: Direct simulations at real chemical potential are hampered by the sign problem
bNote: Due to the quantization condition for magnetic fields on the lattice, we can only simulate with integer

Nb and later need to interpolate to the Nb for 0.3GeV2,0.5GeV2 or 0.8GeV2 respectively

Extrapolate New Simulation Parameters

We want to predict how µ̂Q and µ̂S behave w.r.t µ̂B by using a Taylor series as

ansatz (see eq.4) (X ∈ {Q,S})

µ̂X(µ̂B) = x1µ̂B + x3µ̂3
B + x5µ̂5

B + O(µ̂7
B) (4)

⇔ dµ̂X
dµ̂B

(µ̂B) = x1 + 33µ̂2
B + 5x5µ̂4

B + O(µ̂5
B) (5)

A schematic depiction of this can be seen in figure (3).
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Figure 3. Schematic depiction of the ansatz in eq. (4)

Using this ansatz we follow the following ideas:

1. Solving eq (4) and (5) for x3 and x5, where x1 is the value dµ̂X
dµ̂B

(µ̂B = 0)

2. Fit the ansatz of eq. (4) where x5 is set to 0 and solve for x1 and x3. This

idea can also be expanded with a spline interpolation for the temperatures

to smooth the µ̂X(T) dependence despite usage of integer Nb.

The prediction for the next µ̂B = 4 iπ
8
runs for the different ideas can be seen in

fig. (4) for µ̂Q(T) and in fig. (5) for µ̂S(T) for the runs around eB = 0.5GeV2

140 150 160 170 180 190 200
T (MeV)

0.30

0.28

0.26

0.24

0.22

0.20

Q
(

B
)

lower Nb from fit
upper Nb from fit
lower Nb algebraic
upper Nb algebraic
interpolated value to constant magnetic field
lower Nb from Spline interpolation
upper Nb from Spline interpolation
Spline fit with 1  band

Figure 4. Extrapolation for the temperature range for µ̂Q(µ̂B = 4 iπ
8
)
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Figure 5. Extrapolation for the temperature range for µ̂S(µ̂B = 4 iπ
8
)
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* For details and physical interpretation see the talk by Dean Valois from Tue.

30.07 14:15 in session TR5.
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