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The talk is based on:
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Unitarity tests of the CKM matrix VCKM

Checking the unitarity of VCKM is an important test of the SM. E.g. for the first row:

|Vud|2 + |Vus|2 + |Vub|2 = 1 (?)
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Most precise determinations of Vud(s) from:

• |Vud| : superallowed β−decay (0.3 ppt),
semileptonic decay π+ → π0eνe (0.3%).

• |Vus| : semileptonic decays K → πℓνℓ (0.3%).

• |Vus|/|Vud| : ratio of leptonic K± and π±

decays K/π → ℓνℓ(γ) (0.2%).

Γ[K+ → πℓνℓ] ∝ |Vus|2|f+(0)|2 · (1 + δ
ℓ
Kπ),

Γ[K± → ℓνℓ(γ)]
Γ[π± → ℓνℓ(γ)]

∝
|Vus|2

|Vud|2

(
f+

K

f+
π

)2

· (1 + δKπ)

Tension between |Vus| from leptonic and semileptonic decays & |V uni
us |
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τ → Xud/usντ enters the game...

The hadronic decays of the τ lepton, i.e. τ → Xudντ , τ → Xusντ provide an
alternative way to determine |Vud| and |Vus|:

• The lower value of |Vus| from ūs

inclusive τ decays is the so-called
τ -puzzle.

• Inclusive τ → Xusντ result on the
left plot obained using truncated
operator-product-expansion (OPE).

• Exclusive-channel τ± → K±ντ

determination of |Vus| larger than
inclusive (but ≲ |V uni

us |).
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Calculation of the inclusive τ -decay rate

At lowest-order in the Fermi effective theory one has (e.g. for ud channel):

Heff
ud(x) =

GF√
2

Vud S
1/2
EW ν̄τ (x)γα(1 − γ5)τ(x)︸ ︷︷ ︸

Jα
ντ τ (x)

× d̄(x)γα(1 − γ5)u(x)︸ ︷︷ ︸
(Jα

ud
)†(x)

+ h.c.

GF is Fermi constant, SEW = 1 + O(αem) = 1.0201(3) a SD EW correction.

The amplitude A(τ → Xudντ ) ≡ ⟨ντ Xud|τ⟩SM is given in the EFT by:

A(τ → Xudντ ) =
GF√

2
Vud S

1/2
EW ⟨Xud ντ | Jα

ντ τ (0)Jα
ud(0)† |τ⟩

=
GF√

2
Vud S

1/2
EW ⟨ντ | Jα

ντ τ (0) |τ⟩ ⟨Xud| Jα
ud(0)† |0⟩

For the inclusive rate we need |A|2 =
∑

Xud
|A(τ → Xud ντ )|2... 4



Inclusive rate from the optical theorem

Γ[τ → Xudντ ] =
1

2 mτ

∫
Φ

d3pν

(2π)3 2Eν
|A|2 =

1
2mτ

2Im[Γττ ]

Γττ = ⟨τ |T |τ⟩ is the forward amplitude (S = 1 + iT ) due to interactions with
flavoured ud(us) states only.

Källén-Lehmann representation of hadronic-vacuum-polarization (HVP):

≡ Παβ
ud

(q) = i

∫
d4x eiqx ⟨0|T

{
Jα

ud(x)Jβ
ud

(0)†
}

|0⟩

= −
∫ ∞

0

dM2

2π

ραβ
ud

(qM )
q2 − M2 + iε

, qM = (
√

q2 + M2, q)

ραβ
ud

(q) = (2π)4⟨0|Jα
ud(0)δ4(P − q)Jβ

ud
(0)†|0⟩ spectral density 5



The inclusive decay rate

Exploiting Lorentz invariance ραβ
ud

(q) decomposed into a longitudinal (L) and a
transverse component (T)

ραβ
ud

(q) =
(

qαqβ − q2 gαβ
)

ρT(q2) + qαqβ ρL(q2)

The decomposition allows to evaluate the inclusive rate Γ[τ → Xudντ ] as

Γ[τ → Xudντ ] =
G2

F |Vud|2SEW m5
τ

32π2

∫ 1

0
ds (1 − s)2

[
(1 + 2 s)

s=q2/m2
τ︷ ︸︸ ︷

ρT(s) + ρL(s)
]

It is convenient to normalize the inclusive hadronic decay rate of the τ over

Γ[τ → eν̄eντ ] =
G2

F m5
τ

192 π3 , obtaining the elegant relation

R
(τ)
ud

=
Γ(τ → Xud ντ )
Γ(τ → e ν̄e ντ )

= 6π SEW |Vud|2
∫ 1

0
ds (1 − s)2

[
(1 + 2 s) ρT(s) + ρL(s)

]
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The inclusive decay rate on the lattice

The quantity we can directly access in lattice QCD are Euclidean time-dependent
correlation functions. The primary input for e.g. the ud channel is

Cαβ (t, q) =
∫

d3x e−iq·x ⟨0| T
(

Jα
ud(−it, x) Jβ

ud
(0)†
)

|0⟩

Q : How is the spectral density ραβ
ud

(q) related to the Euclidean correlator Cαβ(t, q)?

A : ραβ
ud

is related to Cαβ through an inverse Laplace transform (LT) [BACKUP]

Cαβ(t, q) t>0=
∫ ∞

0

dE

2π
e−Etραβ

ud
(E, q)

!△ Finding the inverse LT of a function affected by uncertainty and known on a
finite set of points, as in a typical lattice calculation, is an ill-posed problem.
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Do we really need ραβ
ud (E, q)?

To compute:

R
(τ)
ud

= 6πSEW|Vud|2
∫ 1

0
ds (1 − s)2

[
(1 + 2 s) ρT(s) + ρL(s)

]
= 12πSEW

|Vud|2

m3
τ

∫ ∞

0
dE

[
KT

(
E

mτ

)
E2ρT(E2) + KL

(
E

mτ

)
E2ρL(E2)

]
we actually ”only” need the convolution of the longitudinal and transverse spectral

densities E2ρL(E2) and E2ρT (E2) with the kernel functions

KL(x) ≡
1
x

(
1 − x2

)2
θ(1 − x) , KT(x) ≡

(
1 + 2x2

)
KL(x)

θ-function needed to implement the closure of the phase-space at E = mτ .

CL(t) ≡ C
00(t, 0) =

∫ ∞

0

dE

2π
e

−Et
ρL(E

2)E
2

CT(t) ≡
1
3

C
ii(t, 0) =

∫ ∞

0

dE

2π
e

−Et
ρT(E

2)E
2
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Evaluating the convolution integral (I = {T, L})

To evaluate directly Rτ
ud we can approximate KI( E

mτ
) ≃

N∑
n=1

gn,Ie
−naE , and then

evaluate R
(τ)
ud

= R
(τ,L)
ud

+ R
(τ,T)
ud

using
(

B = 12πSEW
|Vud|2

m3
τ

)
:

R
(τ,I)
ud

≃ B

N∑
n=1

gn,I CI(na) = B

∫ ∞

0

dE

2π

(
N∑

n=1

gn,Ie
−naE

)
︸ ︷︷ ︸

≃KI(E/mτ )

E2ρI(E2)

Coefficients gn,I can be obtained minimizing:

AI[g] =
∫ ∞

E0

dE

2π

∣∣∣KI

(
E

mτ

)
−

N∑
n=1

gne−naE

∣∣∣2, E0 > 0 to ensure convergence

However they are strongly oscillating...
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The smeared-ratio R
(τ)
ud (σ)

• What makes the coefficients gn,I bad-behaved is the presence in the kernel
functions KL and KT of the θ-function, which is non-smooth.

• To make a step-forward, we follow the approach developed in [Gambino et al., PRL
125 (2020)] in the context of inclusive semileptonic B decays.

We first introduce the smeared kernel functions Kσ
I (x) through the replacement

θ(x) → Θσ(x) ≡
1

1 + e−x/σ
, lim

σ 7→0
Θσ(x) = θ(x)
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and evaluate on the lattice, for several σ, the corresponding smeared-ratio

R
(τ,I)
ud

(σ) = 12πSEW
|Vud|2

m3
τ

∫ ∞

0
dE Kσ

I

(
E

mτ

)
E2ρI(E2)

L → ∞ before σ → 0 avoids power-like finite-size effects (FSEs). 10



The smeared-ratio from a Backus-Gilbert-like approach

We however still need a regularization mechanism to tame the oscillations of the gI
coefficients (that would blow up our uncertainties).

The Hansen-Lupo-Tantalo (HLT) method provides the coefficients gI(σ) minimizing a
functional W α

I [g] which balances syst. and stat. errors of reconstructed R
(τ,I)
ud

(σ)

W α
I [g] =

Aα
I [g]

Aα
I [0]

+ λBI[g] ,
∂Wn[g]

∂g

∣∣∣
g=gI

= 0

A
α
I [g] =

∫ rmax/a

Emin

dE e
aEα

∣∣∣Kσ
I

(
E

mτ

)
−

N∑
n=1

gne
−naE

∣∣∣2 ⇐= (syst.)2 error due to reconstruction

BI[g] ∝
N∑

n1,n2=1

gn1 gn2 Cov (CI(an1), CI(an2)) ⇐= (stat.)2 error of reconstructed R
(τ,I)
ud

(σ)

• λ is trade-off parameter =⇒ tuned for optimal balance of syst. and stat.
errors. {α, Emin, rmax} algorithmic params. to tune for optimal performance.
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Numerical results for ūs channel
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Simulation details [only isoQCD: αem = md − mu = 0]

Six physical-point Nf = 2 + 1 + 1 ensembles, with a ∈ [0.049 fm − 0.080 fm]. L ∼ 5.1 fm

and L ∼ 7.6 fm to control Finite Size Effects (FSEs).

ID L/a a fm L fm
B64 64 0.07951(4) 5.09
B96 96 0.07951(4) 7.63
C80 80 0.06816(8) 5.45
C112 112 0.06816(8) 7.63
D96 96 0.05688(6) 5.46
E112 112 0.04891(6) 5.48

• We use two distinct lattice regularizations of

the weak current, the so-called TM and OS

currents, which must produce exact same

results in the continuum limit.

• Iwasaki action for gluons.

• Wilson-clover twisted mass fermions at
maximal twist for quarks (automatic O(a)
improvement).

• Scale set using fπ = 130.5 MeV,
mπ = 135 MeV, mK = 494.6 MeV,
mDs = 1967 MeV. 13



Stability analysis [Bulava et al, JHEP07 (2022)] (σ = 0.02)

For each contribution and σ, perform a scan in λ to find the region where stat. errors dominate
over systematics due to incorrect reconstruction of kernel functions.

• Goodness of reconstruction measured by dI[gλ
I ] ≡

√
A0

I [gλ
I ]/A0

I [0]
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Optimal λ (rightmost vertical line) chosen in the region

of small dI[gλ
I ] where a plateaux is visible.
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Exponential penalty exp(αaE) for errors at large E drastically improves stability. 14



Data-driven estimate of FSEs (σ = 0.02)

FSEs estimated from observed spread on B64/B96 and C80/C112 ensembles.
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• FSEs typically very tiny...larger than 2σstat in only 1% of the cases.

• We associate to our results at L ∼ 5.5 fm a systematic error due to FSEs
estimated as

ΣFSE
I (σ) = max

r={tm,OS}

{
∆r

I(σ) erf

(
1

√
2σ∆r

I(σ)

)}

∆r
I(σ) =

∣∣∣R(τ,I),r
us (σ, C80) − R

(τ,I),r
us (σ, C112)

∣∣∣, σ∆r
I

(σ) is relative uncertainty of ∆r
I(σ)
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Continuum-limit and σ → 0 extrapolation

a → 0 at fixed σ (example for σ = 0.02)
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OS raw-data, L ≃ 7.5 fm

R
(τ
)

u
s
(σ
)/
|V

u
s|2

• Performed combined (TM and OS)
constant, linear and quadratic
(only for σ ≥ 0.12) extrapolations in a2.

• We observe extremely small UV
cutoff effects at small σ.

• Results combined using
Akaike Information Criterion (AIC).

σ → 0 after a → 0. On theoretical grounds one expects R
(τ)
us (σ) = R

(τ)
us + O(σ4)
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• σ6 corrections subleading for σ ≤ 0.12.

• σ4 corrections subleading for σ ≤ 0.04
(flat behaviour).

• Well controlled σ → 0 extrapolation ✓.
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The Cabibbo angle from inclusive τ -decays

Our final determination is Rτ
us/|Vus|2 = 3.407 (22) [0.6% uncertainty]

0.21 0.22 0.23 0.24 0.25 0.26

From unitarity

|Vus|

τ → Xus ντ [This work]
τ − OPE − 1, Refs. [6-7]
τ − OPE − 2, Refs. [8-9]
τ−latt-disp, Ref. [10]
τ → K ντ , Ref. [5]
Hyperons, Ref. [4]
Kℓ3, Ref. [3]
K/πℓ2, Ref. [3]
0+ → 0+ β-decays, Ref. [14]
n → p e ν, Ref. [4]
τ → Xud ντ , Ref. [2]
πℓ3, Ref. [4]

• Using the exp. value Rexp
us = 0.1632(27), we get |Vus| = 0.2189(7)th(18)exp

• Our result has < 1% uncertainty, and agrees with OPE results.

• Our results is 3.2σ (2.2σ) smaller than determination from leptonic
(semileptonic) decays.

• At present accuracy level, QED+strong isospin-breaking corrections needed. 17



Determination of |Vud| [Evangelista et al., PRD 108 (2023)], if I have time

1.85 1.9 1.95 2

ALEPH

OPAL

R
(τ,V )
ud /|Vud|2

This work
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R
(τ,A)
ud /|Vud|2

This work

3.6 3.65 3.7 3.75 3.8 3.85

ALEPH
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HFLAV

R
(τ )
ud /|Vud|2

This work

• Good agreement with ALEPH data (both for total and A/V channels), while we observe
some difference w.r.t. OPAL data in A/V channels. For this comparison we used |Vud|
from superallowed β-decay.

• Alternatively, we can use the HFLAV average value R
(τ)
ud (HFLAV) = 3.471 (7) to obtain

|Vud| = 0.9752 (39)

in good agreement with |Vud| = 0.97373(31) from superallowed β-decay.

• Our result shows that a permille precision extraction of |Vud| from inclusive τ -decay can be
obtained in the near future! 18



Conclusions

• We have presented a first principles determination of |Vud| and |Vus| from
inclusive τ−decays.

• Our current uncertainties are ≃ 0.4% for |Vud| and ≃ 0.9% for |Vus|. The latter
uncertainty is dominated by the experimental uncertainty on the inclusive rate in
the ūs channel.

• It is however important to keep in mind that our calculations are still missing of
the QED and strong-isospin-breaking (SIB) corrections which are parametrically
expected to give a O(αem) ≃ O( δmud

ΛQCD
) ≃ 1% contribution, and which MUST

be determined at this level of precision.

• The calculation of the leading isospin-breaking corrections is underway!

Stay tuned and thank you very much for the attention
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Relation between spectral density and Euclidean correlator

Cαβ (t, q) =
∫

d3x e−iq·x ⟨0| T
(

Jα
ud(−it, x) Jβ

ud
(0)†
)

|0⟩

Let’s find the relation between Cαβ(t, q) and the spectral density ρα,β(E, q):

Cαβ(t, q) t>0=
∫

d3xe−iqx⟨0|Jα
ud(0)e−Ht+iPxJβ

ud
(0)†|0⟩

= ⟨0|Jα
ud(0)e−Ht(2π)3δ3(P − q)Jβ

ud
(0)†|0⟩

=
∫ ∞

−∞

dE

2π
e−Et ⟨0|Jα

ud(0)(2π)4 δ(H − E) δ3(P − q)︸ ︷︷ ︸
δ4(P−qE) , qE=(E,q)

Jβ
ud

(0)†|0⟩

where we just used the relation e−Ht =
∫∞

−∞
dE
2π

e−Et 2π δ(H − E)

Recalling the definition of the spectral density one has

Cαβ(t, q) t>0=
∫ ∞

0

dE

2π
e−Etραβ

ud
(E, q)
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