The Cabibbo Angle from Inclusive *τ* **Decays**

Giuseppe Gagliardi, INFN & Università di Roma Tre

On behalf of the ETM Collaboration

Lattice 2024, Liverpool

The talk is based on:

EDITORS' SUGGESTION

Inclusive hadronic decay rate of the τ lepton from lattice QCD

The authors express the inclusive hadronic decay rate of the tau lepton as an integral over the spectral density of the two-point correlator of the weak $V - A$ hadronic current which they compute fully nonperturbatively in lattice QCD. In a lattice QCD computation with all systematic errors except for isospin breaking effects under control, they then obtain the CKM matrix element V_{ud} with subpercent errors showing that their nonperturbative method can become a viable alternative to superallowed nuclear beta decays for obtaining V_{ud} .

A. Evangelista et al. Phys. Rev. D 108, 074513 (2023)

Unitarity tests of the CKM matrix V_{CKM}

Checking the unitarity of V_{CKM} is an important test of the SM. E.g. for the first row:

 $\Gamma[K^+ \to \pi \ell \nu_\ell] \propto |V_{us}|^2 |f_+(0)|^2 \cdot (1 + \delta_{K\pi}^\ell),$

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ (?)

Most precise determinations of $V_{ud(s)}$ from:

- |*Vud*| : superallowed *β*−decay (0*.*3 ppt), semileptonic decay $\pi^+ \to \pi^0 e \nu_e$ (0.3%) .
- $|V_{us}|$: semileptonic decays $K \to \pi \ell \nu_\ell$ (0.3%).
- $|V_{us}|/|V_{ud}|$: ratio of leptonic K^{\pm} and π^{\pm} decays $K/\pi \rightarrow \ell \nu_{\ell}(\gamma)$ (0.2%).

$$
\frac{\Gamma[K^{\pm} \to \ell \nu_{\ell}(\gamma)]}{\Gamma[\pi^{\pm} \to \ell \nu_{\ell}(\gamma)]} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \left(\frac{f_K^+}{f_\pi^+}\right)^2 \cdot (1 + \delta_{K\pi})
$$

Tension between $\left|V_{us}\right|$ from leptonic and semileptonic decays $\&$ $\left|V_{us}^{\text{uni}}\right|$

$\tau \rightarrow X_{ud/us} \nu_{\tau}$ enters the game...

The hadronic decays of the τ lepton, i.e. $\tau \to X_{ud} \nu_{\tau}$, $\tau \to X_{us} \nu_{\tau}$ provide an

- The lower value of $|V_{us}|$ from $\bar{u}s$ inclusive *τ* decays is the so-called *τ*-puzzle.
- Inclusive $\tau \to X_{us}\nu_{\tau}$ result on the left plot obained using truncated operator-product-expansion (OPE).
- **•** Exclusive-channel $\tau^{\pm} \to K^{\pm} \nu_{\tau}$ determination of |*Vus*| larger than $\text{inclusive (but } \lesssim |V_{us}^{\text{uni}}|).$

Calculation of the inclusive *τ* **-decay rate**

At lowest-order in the Fermi effective theory one has (e.g. for *ud* channel):

 G_F is Fermi constant, $S_{\text{EW}} = 1 + \mathcal{O}(\alpha_{\text{em}}) = 1.0201(3)$ a SD EW correction.

The amplitude $\mathcal{A}(\tau \to X_{ud}\nu_{\tau}) \equiv \langle \nu_{\tau} X_{ud} | \tau \rangle_{\text{SM}}$ is given in the EFT by:

$$
\mathcal{A}(\tau \to X_{ud}\nu_{\tau}) = \frac{G_F}{\sqrt{2}} V_{ud} S_{\text{EW}}^{1/2} \langle X_{ud}\nu_{\tau} | J_{\nu_{\tau}\tau}^{\alpha}(0) J_{ud}^{\alpha}(0)^{\dagger} | \tau \rangle
$$

=
$$
\frac{G_F}{\sqrt{2}} V_{ud} S_{\text{EW}}^{1/2} \langle \nu_{\tau} | J_{\nu_{\tau}\tau}^{\alpha}(0) | \tau \rangle \langle X_{ud} | J_{ud}^{\alpha}(0)^{\dagger} | 0 \rangle
$$

For the inclusive rate we need $|A|^2 = \sum_{X_{ud}} |A(\tau \to X_{ud} \, \nu_\tau)|^2 ...$

Inclusive rate from the optical theorem

$$
\Gamma[\tau \to X_{ud} \nu_\tau] = \frac{1}{2\,m_\tau}\int_\Phi \frac{\mathrm{d}^3 p_\nu}{(2\pi)^3\,2E_\nu} |\mathcal{A}|^2 = \frac{1}{2m_\tau} 2\mathrm{Im}[\Gamma_{\tau\tau}]
$$

 $\Gamma_{\tau\tau} = \langle \tau | T | \tau \rangle$ is the forward amplitude $(S = 1 + iT)$ due to interactions with flavoured *ud*(*us*) states only.

Källén-Lehmann representation of hadronic-vacuum-polarization (HVP):

$$
\frac{d}{d\pi}\sqrt{\prod_{ud} \hat{q}} \hat{q} = \Pi_{ud}^{\alpha\beta}(q) = i \int d^4x \, e^{iqx} \langle 0|T \left\{ J_{ud}^{\alpha}(x) J_{ud}^{\beta}(0)^{\dagger} \right\} |0\rangle
$$
\n
$$
= - \int_0^{\infty} \frac{dM^2}{2\pi} \frac{\rho_{ud}^{\alpha\beta}(q_M)}{q^2 - M^2 + i\epsilon} , \qquad q_M = (\sqrt{q^2 + M^2}, q)
$$

 $\rho_{ud}^{\alpha\beta}(q) = (2\pi)^4 \langle 0 | J_{ud}^{\alpha}(0) \delta^4(P - q) J_{ud}^{\beta}(0)^\dagger$ spectral density $\begin{array}{c} \boxed{5} \end{array}$

The inclusive decay rate

Exploiting Lorentz invariance $\rho_{ud}^{\alpha\beta}(q)$ decomposed into a longitudinal (L) and a transverse component (T)

$$
\rho_{ud}^{\alpha\beta}(q) = \left(q^{\alpha}q^{\beta} - q^2 g^{\alpha\beta}\right)\rho_{\rm T}(q^2) + q^{\alpha}q^{\beta} \rho_{\rm L}(q^2)
$$

The decomposition allows to evaluate the inclusive rate $\Gamma[\tau \to X_{ud} \nu_\tau]$ as

$$
\Gamma[\tau \to X_{ud}\nu_{\tau}] = \frac{G_F^2 |V_{ud}|^2 S_{\text{EW}} m_{\tau}^5}{32\pi^2} \int_0^1 \text{d}s (1-s)^2 \left[(1+2s) \overbrace{\rho_{\text{T}}(s) + \rho_{\text{L}}(s)}^{s=q^2/m_{\tau}^2} \right]
$$

It is convenient to normalize the inclusive hadronic decay rate of the *τ* over

$$
\Gamma[\tau\to e\bar\nu_e\nu_\tau]=\frac{G_F^2\,m_\tau^5}{192\,\pi^3}\quad,
$$
 obtaining the elegant relation

$$
R_{ud}^{(\tau)} = \frac{\Gamma(\tau \to X_{ud} \nu_\tau)}{\Gamma(\tau \to e \bar{\nu}_e \nu_\tau)} = 6\pi S_{\rm EW} |V_{ud}|^2 \int_0^1 \mathrm{d}s (1-s)^2 \left[(1+2s) \rho_{\rm T}(s) + \rho_{\rm L}(s) \right]
$$

The inclusive decay rate on the lattice

The quantity we can directly access in lattice QCD are Euclidean time-dependent correlation functions. The primary input for e.g. the *ud* channel is

$$
C^{\alpha\beta}(t,\mathbf{q}) = \int d^3x \, e^{-i\mathbf{q}\cdot\mathbf{x}} \langle 0| \, T\left(J_{ud}^{\alpha}(-it,\mathbf{x}) J_{ud}^{\beta}(0)^{\dagger}\right) |0\rangle
$$

 ${\bf Q}$: How is the spectral density $\rho_{ud}^{\alpha\beta}(q)$ related to the Euclidean correlator $C^{\alpha\beta}(t,q)$?

 $\mathsf{A}: \rho_{ud}^{\alpha\beta}$ is related to $C^{\alpha\beta}$ through an inverse Laplace transform (LT) [BACKUP]

$$
C^{\alpha\beta}(t,q) \stackrel{t>0}{=} \int_0^\infty \frac{\mathrm{d}E}{2\pi} e^{-Et} \rho_{ud}^{\alpha\beta}(E,q)
$$

 \triangle Finding the inverse LT of a function affected by uncertainty and known on a finite set of points, as in a typical lattice calculation, is an ill-posed problem.

\mathbf{Do} we really need $\rho_{ud}^{\alpha\beta}(E,\boldsymbol{q})$?

$$
\begin{aligned}\n\text{To compute:} \\
R_{ud}^{(\tau)} &= 6\pi S_{\text{EW}} |V_{ud}|^2 \int_0^1 \text{d}s \left(1 - s\right)^2 \left[(1 + 2s)\rho_{\text{T}}(s) + \rho_{\text{L}}(s) \right] \\
&= 12\pi S_{\text{EW}} \frac{|V_{ud}|^2}{m_\tau^3} \int_0^\infty \text{d}E \left[K_{\text{T}} \left(\frac{E}{m_\tau} \right) E^2 \rho_{\text{T}}(E^2) + K_{\text{L}} \left(\frac{E}{m_\tau} \right) E^2 \rho_{\text{L}}(E^2) \right]\n\end{aligned}
$$

we actually "only" need the convolution of the longitudinal and transverse spectral densities $E^2 \rho_L(E^2)$ and $E^2 \rho_T(E^2)$ with the kernel functions

$$
K_{\rm L}(x) \equiv \frac{1}{x} (1 - x^2)^2 \theta (1 - x)
$$
, $K_{\rm T}(x) \equiv (1 + 2x^2) K_{\rm L}(x)$

θ-function needed to implement the closure of the phase-space at $E = m_τ$.

$$
C_{\rm L}(t) \equiv C^{00}(t, \mathbf{0}) = \int_0^\infty \frac{dE}{2\pi} e^{-Et} \rho_{\rm L}(E^2) E^2
$$
\n
$$
C_{\rm T}(t) \equiv \frac{1}{3} C^{ii}(t, \mathbf{0}) = \int_0^\infty \frac{dE}{2\pi} e^{-Et} \rho_{\rm T}(E^2) E^2
$$

Evaluating the convolution integral $(I = \{T, L\})$

To evaluate directly R^{τ}_{ud} we can approximate $K_{\rm I}(\frac{E}{m_{\tau}}) \simeq \displaystyle{\sum^{N}} g_{n,{\rm I}} e^{-naE}$, and then *n*=1 evaluate $R_{ud}^{(\tau)} = R_{ud}^{(\tau,\mathrm{L})} + R_{ud}^{(\tau,\mathrm{T})}$ using $\left(B = 12 \pi S_{\mathrm{EW}} \frac{|V_{ud}|^2}{m_\tau^3}\right)$ $\frac{\left(\frac{7}{4}u\right)^2}{m_\tau^3}$: $R_{ud}^{(\tau, \mathrm{I})} \simeq B \sum^{N}$ *n*=1 $g_{n,1} C_1(na) = B \int_{-\infty}^{\infty}$ 0 d*E* $\frac{{\rm d}E}{2\pi} \left(\sum_{i=1}^{N} \right)$ *n*=1 $g_{n,\text{I}}e^{-naE}$ *E*² $\rho_{\text{I}}(E^2)$ $\simeq K_I(E/m_\tau)$

Coefficients *gn,I* can be obtained minimizing:

 $A_{\rm I}[g] = \int^\infty$ *E*0 d*E* 2*π* $K_I\left(\frac{E}{m} \right)$ *mτ* $\left| \int_{0}^{N} e^{-naE} \right|$ *n*=1 2, $E_0 > 0$ to ensure convergence

However they are strongly oscillating...

The smeared-ratio $R_{ud}^{(\tau)}(\sigma)$

- What makes the coefficients $g_{n,1}$ bad-behaved is the presence in the kernel functions K_{L} and K_{T} of the θ -function, which is non-smooth.
- To make a step-forward, we follow the approach developed in [Gambino et al., PRL 125 (2020)] in the context of inclusive semileptonic *B* decays.

We first introduce the smeared kernel functions $K^{\sigma}_{\rm I}(x)$ through the replacement

and evaluate on the lattice, for several σ , the corresponding smeared-ratio

$$
R_{ud}^{(\tau,\mathrm{I})}(\sigma) = 12\pi S_{\mathrm{EW}} \frac{|V_{ud}|^2}{m_\tau^3} \int_0^\infty \mathrm{d}E \, K_\mathrm{I}^\sigma \left(\frac{E}{m_\tau}\right) E^2 \rho_\mathrm{I}(E^2)
$$

\n
$$
L \to \infty \text{ before } \sigma \to 0 \text{ avoids power-like finite-size effects (FSEs)}.
$$

The smeared-ratio from a Backus-Gilbert-like approach

We however still need a regularization mechanism to tame the oscillations of the q_I coefficients (that would blow up our uncertainties).

The Hansen-Lupo-Tantalo (HLT) method provides the coefficients $g_1(\sigma)$ minimizing a f unctional $W^{\alpha}_{\rm I}[g]$ which balances syst. and stat. errors of reconstructed $R^{(\tau, {\rm I})}_{ud}(\sigma)$

$$
W_{\rm I}^\alpha[\textbf{\textit{g}}]=\frac{A_{\rm I}^\alpha[\textbf{\textit{g}}]}{A_{\rm I}^\alpha[\textbf{0}]}+\lambda B_{\rm I}[\textbf{\textit{g}}]\;,\qquad \frac{\partial W_n[\textbf{\textit{g}}]}{\partial g}\bigg|_{\textbf{\textit{g}}=\textbf{\textit{g}}_{\rm I}}=0
$$

 $A_{{\rm I}}^{\alpha}[{\boldsymbol g}] = \int^{r_{\rm max}/a}$ *E*min $dE e^{aE\alpha}$ K_1^{σ} $\left(\frac{E}{m}\right)$ *m^τ* $\left| \int_{0}^{N} e^{-naE} \right|$ *n*=1 $\left(\frac{2}{\sqrt{2}} \right)^2$ error due to reconstruction

 $B_{\text{I}}[\mathbf{g}] \propto \sum_{q=1}^{N} g_{n_1} g_{n_2} \text{Cov} (C_1(an_1), C_1(an_2)) \leftarrow (\text{stat.})^2 \text{ error of reconstructed } R_{ud}^{(\tau,1)}(\sigma))$ $n_1, n_2 = 1$

• λ is trade-off parameter \implies tuned for optimal balance of syst. and stat. errors. {*α, E*min*, r*max} algorithmic params. to tune for optimal performance.

Numerical results for $\bar{u}s$ channel

Simulation details [only isoQCD: $\alpha_{em} = m_d - m_u = 0$]

Six physical-point $N_f = 2 + 1 + 1$ ensembles, with $a \in [0.049 \text{ fm} - 0.080 \text{ fm}].$ *L* ~ 5.1 fm

and *L* ∼ 7*.*6 fm to control Finite Size Effects (FSEs).

• We use two distinct lattice regularizations of the weak current, the so-called TM and OS currents, which must produce exact same results in the continuum limit.

- Iwasaki action for gluons.
- Wilson-clover twisted mass fermions at maximal twist for quarks (automatic $\mathcal{O}(a)$ improvement).
- Scale set using $f_\pi = 130.5$ MeV, $m_{\pi} = 135$ MeV, $m_K = 494.6$ MeV, $m_{D_s} = 1967 \text{ MeV}.$ 13

Stability analysis [Bulava et al, JHEP07 (2022)] $(\sigma = 0.02)$

For each contribution and σ , perform a scan in λ to find the region where stat. errors dominate over systematics due to incorrect reconstruction of kernel functions.

• Goodness of reconstruction *measured* by $d_I[g_I^{\lambda}] \equiv \sqrt{A_I^0[g_I^{\lambda}]/A_I^0[0]}$

Comparison between exact and reconstructed kernel at optimal *λ*.

Exponential penalty $\exp(\alpha aE)$ for errors at large *E* drastically improves stability.

Data-driven estimate of FSEs ($\sigma = 0.02$)

FSEs estimated from observed spread on B64/B96 and C80/C112 ensembles.

- FSEs typically very tiny...larger than $2\sigma_{\text{stat}}$ in only 1% of the cases.
- We associate to our results at *L* ∼ 5*.*5 fm a systematic error due to FSEs estimated as

$$
\Sigma_{\mathrm{I}}^{\mathrm{FSE}}(\sigma) = \max_{\mathrm{r}=\{\mathrm{tm},\mathrm{OS}\}}\left\{\Delta_{\mathrm{I}}^{\mathrm{r}}(\sigma)\,\mathrm{erf}\left(\frac{1}{\sqrt{2}\sigma_{\Delta_{\mathrm{I}}^{\mathrm{r}}(\sigma)}}\right)\right\}
$$

 $\Delta_{\mathrm{I}}^{\mathrm{r}}(\sigma) = \left| R_{us}^{(\tau,\mathrm{I}),\mathrm{r}}(\sigma,\mathrm{C80}) - R_{us}^{(\tau,\mathrm{I}),\mathrm{r}}(\sigma,\mathrm{C112}) \right|, \quad \sigma_{\Delta_{I}^{\mathrm{r}}(\sigma)} \text{ is relative uncertainty of } \Delta_{\mathrm{I}}^{\mathrm{r}}(\sigma)$ 15

Continuum-limit and *σ* → 0 **extrapolation**

 $a \rightarrow 0$ at fixed σ (example for $\sigma = 0.02$)

• Performed combined (TM and OS) constant, linear and quadratic (only for $\sigma \geq 0.12$) extrapolations in a^2 .

- We observe extremely small UV cutoff effects at small *σ*.
- Results combined using Akaike Information Criterion (AIC).

 $\sigma \to 0$ after $a \to 0$. On theoretical grounds one expects $R_{us}^{(\tau)}(\sigma) = R_{us}^{(\tau)} + \mathcal{O}(\sigma^4)$

- σ^6 corrections subleading for $\sigma \leq 0.12$.
- σ^4 corrections subleading for $\sigma \leq 0.04$ (flat behaviour).
- Well controlled $\sigma \rightarrow 0$ extrapolation \checkmark .

The Cabibbo angle from inclusive *τ* **-decays**

Our final determination is $R_{us}^{\tau}/|V_{us}|^2 = 3.407\ (22)$ [0*.*6% uncertainty]

- Using the exp. value $R_{us}^{exp} = 0.1632(27)$, we get $|V_{us}| = 0.2189(7)_{th}(18)_{exp}$
- Our result has *<* 1% uncertainty, and agrees with OPE results.
- Our results is 3.2σ (2.2σ) smaller than determination from leptonic (semileptonic) decays.
- At present accuracy level, QED+strong isospin-breaking corrections needed.

Determination of |*Vud*| **[Evangelista et al., PRD 108 (2023)], if I have time**

- Good agreement with ALEPH data (both for total and A/V channels), while we observe some difference w.r.t. OPAL data in A/V channels. For this comparison we used $|V_{ud}|$ from superallowed *β*-decay.
- Alternatively, we can use the HFLAV average value $R_{ud}^{(\tau)}(\text{HFLAV}) = 3.471\ (7)$ to obtain

$$
|V_{\rm ud}| = 0.9752 \ (39)
$$

in good agreement with $|V_{ud}| = 0.97373(31)$ from superallowed β -decay.

• Our result shows that a permille precision extraction of $|V_{ud}|$ from inclusive τ -decay can be obtained in the near future! 18

Conclusions

- We have presented a first principles determination of $|V_{ud}|$ and $|V_{us}|$ from inclusive *τ*−decays.
- Our current uncertainties are $\simeq 0.4\%$ for $|V_{ud}|$ and $\simeq 0.9\%$ for $|V_{us}|$. The latter uncertainty is dominated by the experimental uncertainty on the inclusive rate in the $\bar{u}s$ channel.
- It is however important to keep in mind that our calculations are still missing of the QED and strong-isospin-breaking (SIB) corrections which are parametrically expected to give a $\mathcal{O}(\alpha_{\rm em})\simeq\mathcal{O}(\frac{\delta m_{ud}}{\Lambda_{QCD}})\simeq 1\%$ contribution, and which <code>MUST</code> be determined at this level of precision.
- The calculation of the leading isospin-breaking corrections is underway!

Stay tuned and thank you very much for the attention \heartsuit

[Backup slides](#page-20-0)

Relation between spectral density and Euclidean correlator

$$
C^{\alpha\beta}\left(t,\mathbf{q}\right)=\int d^{3}x\,e^{-i\mathbf{q}\cdot\mathbf{x}}\left\langle 0\right|T\left(J_{ud}^{\alpha}(-it,\mathbf{x})\,J_{ud}^{\beta}(0)^{\dagger}\right)\left|0\right\rangle
$$

Let's find the relation between $C^{\alpha\beta}(t,q)$ and the spectral density $\rho^{\alpha,\beta}(E,q)$:

$$
C^{\alpha\beta}(t,q) \stackrel{t\geq 0}{=} \int d^3x e^{-iqx} \langle 0|J_{ud}^{\alpha}(0)e^{-\mathcal{H}t+i\mathcal{P}x}J_{ud}^{\beta}(0)^{\dagger}|0\rangle
$$

$$
= \langle 0|J_{ud}^{\alpha}(0)e^{-\mathcal{H}t}(2\pi)^3\delta^3(\mathcal{P}-q)J_{ud}^{\beta}(0)^{\dagger}|0\rangle
$$

$$
= \int_{-\infty}^{\infty} \frac{dE}{2\pi} e^{-Et} \langle 0|J_{ud}^{\alpha}(0)(2\pi)^4 \underbrace{\delta(\mathcal{H}-E)\delta^3(\mathcal{P}-q)}_{\delta^4(\mathcal{P}-q_E), q_E=(E,q)} J_{ud}^{\beta}(0)^{\dagger}|0\rangle
$$

where we just used the relation $e^{-\mathcal{H}t} = \int_{-\infty}^{\infty} \frac{dE}{2\pi} e^{-Et} 2\pi \delta(\mathcal{H} - E)$

Recalling the definition of the spectral density one has

$$
C^{\alpha\beta}(t,q) \stackrel{t>0}{=} \int_0^\infty \frac{\mathrm{d}E}{2\pi} e^{-Et} \rho_{ud}^{\alpha\beta}(E,q)
$$