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EDITORS' SUGGESTION

Inclusive hadronic decay rate of
the 7 lepton from lattice QCD

The authors express the inclusive hadronic decay rate
of the tau lepton as an integral over the spectral density
of the two-point correlator of the weak V — A hadronic
current which they compute fully nonperturbatively in
lattice QCD. In a lattice QCD computation with all
systematic errors except for isospin breaking effects
under control, they then obtain the CKM matrix element

V,.a with subpercent errors showing that their
nonperturbative method can become a viable
alternative to superallowed nuclear beta decays for
obtaining Vy4.

A. Evangelista et al.
Phys. Rev. D 108, 074513 (2023)



Unitarity tests of the CKM matrix Vi

Checking the unitarity of Vo is an important test of the SM. E.g. for the first row:

‘Vud|2 + |Vus|2 + |‘/vub|2 =1 (?)
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The hadronic decays of the 7 lepton, i.e. 7 — X, qvr, T — XusVr provide an

alternative way to determine |V,4| and |Vi|:
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= The lower value of |V,| from us

inclusive T decays is the so-called
T-puzzle.

Inclusive 7 — X, s+ result on the
left plot obained using truncated
operator-product-expansion (OPE).

Exclusive-channel 7+ — Kiyf
determination of |Vys| larger than
inclusive (but < |Vuni|).



= Viud
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Vr
eff Gr 1/2 5 7 (e 5
Hyg(x) = 73 Vud Sgw Vr(@)y* (1 =97)7(x) x d(z)y*(1 —7°)u(z) + h.c.
I8 (@) )

G is Fermi constant, Sgpw = 1 + O(@em) = 1.0201(3) a SD EW correction.

The amplitude A(7 — Xyqv+) = (Vr Xyua|T)sum is given in the EFT by:

G
A(T - XudVT) = 7; ud Sé}é’?] < ud V7'| v 7'(0) ud( )T |T>
= CF o SY2 (1] J2 () I7) (Xl T4 (0)T [0)
V2 i h

For the inclusive rate we need |A|? = ZX JA(T = Xyqvs)|?... 4



Inclusive rate from the optical theorem

1 d3p, 1
I'lr —» X = — — A 2= _— oIm[l
Ir udvr] 2m, L (2m)3 2EU| | 2m m{lrr]

T'r+ = (7|T|7) is the forward amplitude (S = 1 + ¢T") due to interactions with
flavoured ud(us) states only.
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Kallén-Lehmann representation of hadronic-vacuum-polarization (HVP):

S 5 %% (q) = z’/d% e’ (0T { g, ()12, (0)T} 0)

o] . af
dm?  p,,(anr)
== —ue - s = (\q*+ M?3,
/O o1 q2 — M2 +ie o = (V4 9

ng (¢) = (27r)4<0|J3d(0)54(73 - q)de(O)”O) spectral density




The inclusive decay rate

Exploiting Lorentz invariance pi‘f(q) decomposed into a longitudinal (L) and a
transverse component (T)

p28(0) = (¢*0° — ¢*9°%) pr(d®) + ¢%¢° pL(d?)

The decomposition allows to evaluate the inclusive rate 't — X, 4] as

s=q>/m?2

! ———
/ ds(1—5) [(1+25) pr(s) + pr(s) ]
0

G%—‘ ‘Vud‘QSEW mi

Dlr — Xyavs) = 3972

It is convenient to normalize the inclusive hadronic decay rate of the T over

2 5
Gsm?

Ut — evevr| = o

, obtaining the elegant relation

1

T r — Xu T

(0 = Tr = Xuavr) :Gwsz\vudP/ ds (1) [(1+25) pr(s) + pr(s)]
0

R —
I'(r — ebevy)




The inclusive decay rate on the lattice

The quantity we can directly access in lattice QCD are Euclidean time-dependent
correlation functions. The primary input for e.g. the ud channel is

C°P (t,q) :/d%e*w<0| T (Jg(—it,z) J2,(0)1) |0)

Q : How is the spectral density pz‘g(q) related to the Euclidean correlator C*?(t, q)?

A ng is related to C®P through an inverse Laplace transform (LT) [BACKUP]

* dE
coB(t, )ti‘)/ —e Ptpti(E, q)
o 2

& Finding the inverse LT of a function affected by uncertainty and known on a

finite set of points, as in a typical lattice calculation, is an ill-posed problem.



Do we really need

To compute:
"1

R'T) = 6nSpw|Vial? / ds (1= 9)? [(1+25) pr(s) + pr(5)]
0

T P

Va2 [ E E
= 12n5Ew%/ dE {KT (—>E2pT(E2) + K7, (—)EQpL(EQ)}
m 0 m masr

we actually "only” need the convolution of the longitudinal and transverse spectral
densities E2py,(E?) and E?pr(E?) with the kernel functions

Ki(2) = - (1-2%)"001 - 2) Kr(e) = (1+22%) K1 ()

8|~

‘ 6-function needed to implement the closure of the phase-space at £ = m. |

“CdE _ 1 “dE _
CL(t) = C"(¢,0) :/ oo¢ (B E? Or(t) = 67 (,0) :/ 5o¢ " pr (BB
0 0




Evaluating the convolution integral (I = {7, L})

N
To evaluate directly R7 ;, we can approximate KI(mAT) ~ E gn?Ie_””'E, and then

n=1
2
evaluate Rq(fd) = RSJZL) + Rq(fdfT) using (B = 127SEw %)

N © g N

1 -

RV ~ B " gn1 Ci(na) = B/ o | D gmre P | B2 pu(E)
n=1 0 n=1
=K1 (E/mr)

Coefficients g,,,; can be obtained minimizing:

mr

©dE E o 5|
Arlg] = o K (*) = Zgne_na ‘ 5 Ey > 0 to ensure convergence
Eo n=1

However they are strongly oscillating...
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The smeared-ratio R} ()

= What makes the coefficients g,, 1 bad-behaved is the presence in the kernel
functions K7, and K~ of the -function, which is non-smooth.

= To make a step-forward, we follow the approach developed in [Gambino et al., PRL
125 (2020)] in the context of inclusive semileptonic B decays.

We first introduce the smeared kernel functions K{ () through the replacement

1
O(z) = BOp(z) = ————— , lim O, (z) = 0(z)
1+ e_-”/” o—0

1 1
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and evaluate on the lattice, for several o, the corresponding smeared-ratio

, Vaa? [ E
R0 (o) = 127rsz%/ dE K (
e 0

T T

) ()

L — oo before o — 0 avoids power-like finite-size effects (FSEs).



The smeared-ratio from a Backus-Gilbert-like approach

We however still need a regularization mechanism to tame the oscillations of the g1
coefficients (that would blow up our uncertainties).

The Hansen-Lupo-Tantalo (HLT) method provides the coefficients gj(o) minimizing a
functional W*[g] which balances syst. and stat. errors of reconstructed Ri;’l)(a)

Ao -
Wilg] = A;E + A\Bilg] , avgig[g] =0
g=g1

2
<= (syst.)? error due to reconstruction

Tmax/a B o
A%lg] = / aE B ko (mi) B o S
i . )

min n=1
N
Bilg] < E gny9ng Cov (Ci(any), Cr(ang)) <= (stat.)2 error of reconstructed RE;’I)(U)

ni,ng=1

= )\ is trade-off parameter = tuned for optimal balance of syst. and stat.
errors. {a, Emin, Tmax } algorithmic params. to tune for optimal performance.
11



Numerical results for us channel

12



Simulation details [only isoQCD: o, = mg — m, = 0]

1

L [fm]

Six physical-point Ny = 2 4 1 4 1 ensembles, with a € [0.049 fm — 0.080 fm]. L ~ 5.1 fm

and L ~ 7.6 fm to control Finite Size Effects (FSEs).

@® This work O Planned

0
mpl =6 112
8 128 96
mpl =5 O ®
112 9 80 64
61 myL =
™=t e e ° & o
o
2l mul =3

D L/a a fm L fm

O.IO4 0.‘05 0.‘06 0.67 0.‘08 0.‘09
a [fm]

We use two distinct lattice regularizations of
the weak current, the so-called TM and OS
currents, which must produce exact same

results in the continuum limit.

B64 64 0.07951(4) 5.09
BY6 96 0.07951(4) 7.63
C80 80 0.06816(8) 5.45
Cl12 112 0.06816(8) 7.63
D96 96 0.05688(6) 5.46
E112 112 0.04891(6) 5.48

lwasaki action for gluons.

Wilson-clover twisted mass fermions at
maximal twist for quarks (automatic O(a)
improvement).

Scale set using fr = 130.5 MeV,
my = 135 MeV, mg = 494.6 MeV,
mp, = 1967 MeV. 13



Stability analysis [Bulava et al, JHEPO7 (2022)] (0 = 0.02)

For each contribution and o, perform a scan in A to find the region where stat. errors dominate
over systematics due to incorrect reconstruction of kernel functions.

= Goodness of reconstruction measured by di[g'] = 1/ A%[g]/A?[0]

: : a 4 B

; a 4 08k .
L } { : & B 4 . Exact kernel —

| R 8 06F Reconstructed kernel — 7
r SE AR R b N 8 o
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drlgy) &

b Exact kernel

'FWHHI“'“. Yty S Wy Reconstructed kernel — q
o 081 : : i 55

r . - : £ oal 1
K B

A 02+ 4
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0.01 0.1 1 2 3 4 5 6

drlg}) z

Optimal A (rightmost vertical line) chosen in the region  Comparison between exact and reconstructed kernel at

of small di[gp'] where a plateaux is visible. optimal A.

Exponential penalty exp(aaFE) for errors at large E drastically improves stability. 14



Data-driven estimate of FSEs (o = 0.02)

FSEs estimated from observed spread on B64/B96 and C80/C112 ensembles.

” B64, tm —— 7

Cl112, OS —~ - h%’}{&{;'x el B96, tm —— :

- .
0.01 0.1 0.01 0.1
drlgy) dilg})

C80, OS —

= FSEs typically very tiny...larger than 20stat in only 1% of the cases.
= We associate to our results at L ~ 5.5 fm a systematic error due to FSEs

estimated as

1
SIFSE(5) — Al(o)erf | ——
1) r:{rtrff)S} i(o)er \/iaAr(J)
1

Al(o) = R,(J;’I)’r(a, C80) — RL‘;’U’r(U, C112)|, TAT(o) 18 relative uncertainty of Aj(o)
15



Continuum-limit and o — 0 extrapolation

a — 0 at fixed o (example for & = 0.02)

= Performed combined (TM and OS)
constant, linear and quadratic

0S raw-data, L =5 fn

T tm raw-data
7.5 w08 raw-data, L =~ 7.5 fnw|

tm raw-data

(only for o > 0.12) extrapolations in a2.

= We observe extremely small UV
cutoff effects at small o.

I o 0 o 0 o 0 o 0 5o = Results combined using
oot ' oo | oms ' oow | oo | oo

o? [f?] Akaike Information Criterion (AIC).

o — 0 after a — 0. On theoretical grounds one expects Rq(fs) (o) = Rq(fs) +0O(c?)

ot it 0 <012 Q=& Ty = deme Q= 5, Py = A
o4 o fit 0=8rp =l a=Lr,—5—={ ® o0 corrections subleading for o < 0.12.
10
9 348 -
a8 34 ited thed = o? corrections subleading for o < 0.04
I
% 6 “Zu 0.005 0.01 0.015 0.02 » (flat behaViOUf’)-
S B -
Emé 4 -
sp ™ - = Well controlled ¢ — 0 extrapolation /.
2
ll] 0. 1‘)2 0. “Ll 0. “)(1 0. (‘]8 l]‘l 0. ‘12 0. ‘14 0. ‘Hv 16




The Cabibbo angle from inclusive 7-decays

Our final determination is R7_/|Vus|? = 3.407 (22) [0.6% uncertainty]

= 7 — Xys v |This work|
m— 7 — OPE — 1, Refs. [6-7]
| | 7 — OPE — 2, Refs. [8-9]
= T—latt-disp, Ref. [10]
- 7 — K, Ref. [5]
—=— Hyperons, Ref. [4]
| K3, Ref. [3]
o K /mp, Ref. [3]
From unitarity HH 0+ — 0% B-decays, Ref. [14]
—a— n— pev, Ref. [4]
; - { 7 = Xuavr, Ref. [2]
I o | ez, Ref. [4]
0.21 0.22 0.23 0.24 0.25 0.26
[Vas|

= Using the exp. value Rys” = 0.1632(27), we get |Vis| = 0.2189(7)¢n (18)exp
= Our result has < 1% uncertainty, and agrees with OPE results.

= Our results is 3.20 (2.20) smaller than determination from leptonic
(semileptonic) decays.

. . . . 17
= At present accuracy level, QED+strong isospin-breaking corrections needed.



Determination of |V,

= ALEPH = ALEPH = ALEPH
= OPAL = OPAL —-— OPAL
L] HFLAV
This work This work This work
1.85 1.9 1.95 2 1.7 1.75 1.8 1.85 1.9 1.95 2 3.6 3.65 3.7 3.75 3.8 3.85
V) (7,4) /11, .y
R /Wl R /Wl R Vial?

| [Evangelista et al., PRD 108 (2023)], if | have time

= Good agreement with ALEPH data (both for total and A/V channels), while we observe
some difference w.r.t. OPAL data in A/V channels. For this comparison we used |Vyq]|
from superallowed (3-decay.

= Alternatively, we can use the HFLAV average value Rf;l)(HFLAV) = 3.471 (7) to obtain
[Vaa| = 0.9752 (39)
in good agreement with [V,q| = 0.97373(31) from superallowed (-decay.

= Our result shows that a permille precision extraction of |V,q| from inclusive 7-decay can be

obtained in the near future! 18



Conclusions

= We have presented a first principles determination of [V;,q] and |Vis| from
inclusive T—decays.

= Our current uncertainties are >~ 0.4% for |V,,q| and =~ 0.9% for |Vis|. The latter
uncertainty is dominated by the experimental uncertainty on the inclusive rate in
the us channel.

= |t is however important to keep in mind that our calculations are still missing of
the QED and strong-isospin-breaking (SIB) corrections which are parametrically
expected to give a O(qem) =~ O(/fg"c‘jg) ~ 1% contribution, and which MUST
be determined at this level of precision.

= The calculation of the leading isospin-breaking corrections is underway!

Stay tuned and thank you very much for the attention =

19
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Relation between spectral density and Euclidean correlator

C*f (t,q) :/d%e—iw O T (Jg4(=it, ) J5,(0)1) |0)

Let's find the relation between C®(t, q) and the spectral density p®?(E, q):

e t>0 — 1 e = 0
Cc*P(t,q) "= /d%e (0|72, (0)e =+ P g8 (0)T|0)
= (0]724(0)e~*t(2m)363 (P — q)J2,(0)1|0)

= / ‘;—fe*“ (01732(0)(2m)* §(H — B) 8°(P — a) 7,(0) [0)

64(P—qg) , ag=(E.q)
where we just used the relation e~ = foo g—E e 27 6(H — E)
J_00 27

Recalling the definition of the spectral density one has

>0 [ dE

> _

CB(t,q) = / 7€ Btyel (B, q)
0 T
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