

RG RUNNING FROM STEP-SCALING MATRICES IN χ **SF SCHEMES FOR** $\Delta F = 2$ **FOUR-FERMION OPERATORS**

RICCARDO MARINELLI

("Sapienza" Università di Roma)

in collaboration with

I. Campos Plasencia, G.M. De Divitiis, M. Dalla Brida, A. Lytle, M. Papinutto, A. Vladikas.

01/08/2024

Lattice 2024 - Liverpool

1

MOTIVATIONS

- Future goal: accurate evaluation of the CP-violating angle δ of the CKM matrix
- **>** $K^0 \bar{K}^0$ oscillations in the SM are sensitive to loop effects, and so to BSM contributions

RG running of ΔF = 2 **FFO** from step-scaling matrices

Indirect investigation of CP violation: ε parameter

$$\varepsilon^{\text{theor}}(\delta) = \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \propto \tilde{U}(\mu) \langle \bar{K}^0 | \mathbf{Q}(\mu) | K^0 \rangle F(\delta)$$

To be evaluated non-perturbatively

Comparing $\varepsilon^{\text{theor}}$ with its experimental estimate we obtain

in the SM:

- **1.** new estimate of the phase δ
- **2.** non-perturbative uncertainties **2.** bounds to BSM contributions

beyond the SM:

- δ kept to the current estimate

2

$K^0 - \bar{K}^0$ OSCILLATIONS

Effective Hamiltonian for K oscillations:

SM:
$$H_{\text{eff}}^{\Delta S=2} = \tilde{U}_1 \mathbf{Q}_1$$
BSM: $H_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^{3} \tilde{U}_i \mathbf{Q}_i + \sum_{i=1}^{3} \tilde{U}'_i \tilde{\mathbf{Q}}_i$ Only one relevant operatorAn operator basis \mathbf{Q}_i

> Transition amplitudes are calculated with

$$\langle \bar{K}^0 | H_{\text{eff}}^{\Delta S=2} | K^0 \rangle$$

5

> The renormalisation introduces an energy-scale in the matrix elements and in the Wilson coefficients:

$$\langle \bar{K}^0 \,|\, H^{\Delta S=2}_{\text{eff}} \,|\, K^0 \rangle^{\text{parity}}_{\text{conservation}} = \tilde{U}_i(\mu) \langle \bar{K}^0 \,|\, \mathbf{Q}_i(\mu) \,|\, K^0 \rangle$$

FEATURES

- Running evaluation with 3 quark flavours in the sea down to ~ 4GeV with SF coupling;
- Running evaluation down to ~ 500MeV with Gradient Flow (GF) coupling;
- New theoretical formulation of the operator running and mixing in the perturbative regime for $N_f = 3$.

A difference often observed between PT and non-PT results at 3GeV (the scale at which matrix elements in FLAG are renormalised), could be relevant in the estimate of quantities like $\varepsilon(\delta)$

FLAG2021]				Cation.	chips, up stati,	etting	renorm volume ation		10, 00	$B_i \propto \langle \mathbf{Q}_i (\mu = 3 \text{GeV}) \rangle$		
Collaboration	Ref.	N_f	p_{nYn}		Chi.	finit.	o de la construcción de la const	^t m ₂	B_2	B_3	B_4	B_5
ETM 15	[55]	2+1+1	Α	*	0	0	*	a	0.46(1)(3)	0.79(2)(5)	0.78(2)(4)	0.49(3)(3)
RBC/UKQCD 16	6 [<mark>60</mark>]	2+1	A	0	0	0	*	b	0.488(7)(17)	0.743(14)(65)	0.920(12)(16)	0.707(8)(44)
SWME 15A	[58]	2 + 1	A	*	0	*	<mark>0</mark> †	_	0.525(1)(23)	0.773(6)(35)	0.981(3)(62)	0.751(7)(68)
SWME 14C	[508]	2 + 1	С	*	0	*	<mark>0</mark> †	_	0.525(1)(23)	0.774(6)(64)	0.981(3)(61)	0.748(9)(79)
SWME $13A^{\ddagger}$	[495]	2 + 1	A	*	0	*	<mark>0</mark> †	_	0.549(3)(28)	0.790(30)	1.033(6)(46)	0.855(6)(43)
RBC/ UKQCD 12E	[502]	2+1	A	•	0	*	*	b	0.43(1)(5)	0.75(2)(9)	0.69(1)(7)	0.47(1)(6)
ETM 12D	[59]	2	A	*	0	0	*	c	0.47(2)(1)	0.78(4)(2)	0.76(2)(2)	0.58(2)(2)

• Inconsistencies between different estimates

• Some results refer to perturbative renormalisation

RG running of ΔF = **2 FFO** from step-scaling matrices

THE XSF

In the continuum we map the SF into the χ SF with a chiral rotation:

$$\psi' = R\left(\frac{\pi}{2}\right)\psi, \quad \bar{\psi}' = \bar{\psi}R\left(\frac{\pi}{2}\right), \quad R(\alpha) = e^{\frac{i}{2}\alpha\gamma_5\tau^3}$$

Correspondence between correlation functions in the SF and χSF:

$$\langle O[\psi,\bar{\psi}]\rangle_{\rm SF}^{\rm cont} = \left\langle O\left[R\left(\pi/2\right)\psi,\bar{\psi}R\left(\pi/2\right)\right]\right\rangle_{\chi \rm SF}^{\rm cont}$$

The boundary rotation removes O(a) effects in the observables!

$$\left\langle O_{\text{even}} \right\rangle_{\text{c}} = \left\langle O_{\text{even}} \right\rangle_{\text{c}}^{\text{cont}} + \mathcal{O}(a^2)$$

FOUR-FERMION OPERATORS RENORMALISATION

Four-Fermion Operators (FFO):

$$\mathcal{O}_{[\Gamma_1\Gamma_2\pm\Gamma_2\Gamma_1]}^{\pm} := \mathcal{O}_{[\Gamma_1\Gamma_2]}^{\pm} \pm \mathcal{O}_{[\Gamma_2\Gamma_1]}^{\pm} ,$$

$$\mathcal{O}_{[\Gamma_1\Gamma_2]}^{\pm} := \frac{1}{2} \Big[\Big(\bar{\psi}_1\Gamma_1\psi_2 \Big) \Big(\bar{\psi}_3\Gamma_2\psi_4 \Big) \pm \Big(\bar{\psi}_1\Gamma_1\psi_4 \Big) \Big(\bar{\psi}_3\Gamma_2\psi_2 \Big) \Big]$$

$$\begin{aligned} \mathcal{Q}_1^{\pm} &= \mathcal{O}_{[VA+AV]}^{\pm} \quad \mathcal{Q}_3^{\pm} = \mathcal{O}_{[PS-SP]}^{\pm} \quad \mathcal{Q}_5^{\pm} = -2\mathcal{O}_{[T\tilde{T}]}^{\pm} \\ \mathcal{Q}_2^{\pm} &= \mathcal{O}_{[VA-AV]}^{\pm} \quad \mathcal{Q}_4^{\pm} = \mathcal{O}_{[PS+SP]}^{\pm} \end{aligned}$$

Behaviour under renormalisation as in a regularisation with exact chiral symmetry:

$$\begin{pmatrix} \bar{\mathcal{Q}}_{1}^{\pm} \\ \bar{\mathcal{Q}}_{2}^{\pm} \\ \bar{\mathcal{Q}}_{3}^{\pm} \\ \bar{\mathcal{Q}}_{4}^{\pm} \\ \bar{\mathcal{Q}}_{5}^{\pm} \end{pmatrix} = \begin{pmatrix} \mathcal{Z}_{11} & 0 & 0 & 0 & 0 \\ 0 & \mathcal{Z}_{22} & \mathcal{Z}_{23} & 0 & 0 \\ 0 & \mathcal{Z}_{32} & \mathcal{Z}_{33} & 0 & 0 \\ 0 & 0 & 0 & \mathcal{Z}_{44} & \mathcal{Z}_{45} \\ 0 & 0 & 0 & \mathcal{Z}_{54} & \mathcal{Z}_{55} \end{pmatrix}^{\pm} \begin{pmatrix} \mathcal{Q}_{1}^{\pm} \\ \mathcal{Q}_{2}^{\pm} \\ \mathcal{Q}_{3}^{\pm} \\ \mathcal{Q}_{4}^{\pm} \\ \mathcal{Q}_{5}^{\pm} \end{pmatrix}$$

EVOLUTION MATRICES

- > Evolution matrices between two scales:
- $\bar{\mathcal{Q}}_i(\mu_2) = U_{ij}(\mu_2, \mu_1)\bar{\mathcal{Q}}_j(\mu_1)$
- Evolution matrices down to a scale $\hat{U}(\mu)$: $\mathbf{U}(\mu_2, \mu_1) =: \left[\hat{\mathbf{U}}(\mu_2)\right]^{-1} \hat{\mathbf{U}}(\mu_1)$
- Problem: for $N_f = 3$ (and 30) two eigenvalues of γ_0/β_0 accidentally satisfy the resonance condition $\lambda_i \lambda_j = 2$, making it impossible to adopt the usual definition

$$\tilde{\mathbf{U}}(\mu) = \left[\frac{\bar{g}^2(\mu)}{4\pi}\right]^{-\frac{\gamma_0}{2b_0}} \mathbf{W}(\mu)$$

Problem solved in the past for the two-scale operator $U(\mu_2, \mu_1)$, but a single-scale evolution operator is needed to represent a Wilson coefficient

WILSON COEFFICIENTS FROM THE POINCARÉ-DULAC THEOREM

The connection $\mathbf{A}(g) = \frac{\gamma(g)}{\beta(g)}$ can be set [2013.16220v3] in its canonical form $\mathbf{A}^{\operatorname{can}}(g) = \frac{1}{g} \left(\mathbf{A} + g^2 \mathbf{N}_2 \right)$ upper-diagonal diagonal through a change of operator basis $\mathbf{S}(g) \simeq \left(1 + \sum_{k=1}^n \mathbf{H}_{2k} g^{2k} \right) \mathbf{S}_{\mathrm{D}} \equiv \mathbf{s}_n(g) \mathbf{S}_{\mathrm{D}}$

The evolution operator can be evaluated and then rotated back to the original operator basis:

$$\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} \exp\left(-\frac{1}{2}\mathbf{\Lambda}\ln(u)\right) \exp\left(-\frac{1}{2}\mathbf{N}_{2}\ln(u)\right) \mathbf{s}_{n}(u)\mathbf{S}_{\mathrm{D}}$$

STEP-SCALING FUNCTIONS

Non-perturbative evolution from the step-scaling functions (SSF):

$$\boldsymbol{\sigma}(u) := \mathbf{U}(\mu/2, \mu) \Big|_{\bar{g}^2(\mu) = u} \longrightarrow \mathbf{U}(u_{\text{had}}, u_{\text{pt}}) = \boldsymbol{\sigma}(u_1) \cdots \boldsymbol{\sigma}(u_N)$$

Discrete step-scaling functions: $\Sigma\left(g_0^2, \frac{a}{L}\right) := \mathcal{Z}\left(g_0^2, \frac{a}{2L}\right) \left[\mathcal{Z}\left(g_0^2, \frac{a}{L}\right)\right]^{-1}$

O(g²) lattice artefacts in the SF energy region removed using subtracted SSF [2112.10606]:

$$\tilde{\boldsymbol{\Sigma}}\left(u,\frac{a}{L}\right) := \boldsymbol{\Sigma}\left(u,\frac{a}{L}\right) [\mathbf{1} + u\log(2)\boldsymbol{\delta}_k(a/L)\boldsymbol{\gamma}_0]^{-1}$$

SSF CONTINUUM EXTRAPOLATION

Global fits are performed with the ansatz

$$\tilde{\boldsymbol{\Sigma}}\left(u_n, \frac{a}{L}\right)\Big]_{ij} = [\boldsymbol{\sigma}(u_n)]_{ij} + \left(\frac{a}{L}\right)^2 \sum_{m=0}^2 [\boldsymbol{\rho}_m]_{ij} u_n^m$$

Parameters found by χ^2 minimisation

L = 6,8,12 for SF coupling, L = 8,12,16 for GF coupling

RG running of ΔF = 2 **FFO** from step-scaling matrices

EVOLUTION MATRICES FROM SSF

ERROR ESTIMATES

The non-perturbative running is finally given by

$$\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} \exp\left(-\frac{\mathbf{\Lambda}}{2} \ln u_{\mathrm{pt}}\right) \exp\left(-\frac{\mathbf{N}_2}{2} \ln u_{pt}\right) \mathbf{s}_n(g) \mathbf{S}_{\mathrm{D}}[\mathbf{U}(u, u_{\mathrm{pt}})]^{-1}$$

- Statistical errors: propagation from the fits
- **Systematic errors (guess) :**
 - Lack of knowledge on higher orders of the anomalous dimension
 - Differences arising if L=6 is included or not

NP RUNNING: BSM 213 INDICES

RG running of ΔF = 2 FFO from step-scaling matrices

RICCARDO MARINELLI 01/08/2024 - LIVERPOOL

15

NP RUNNING: BSM 4|5 INDICES

RG running of ΔF = 2 **FFO** from step-scaling matrices

RICCARDO MARINELLI 01/08/2024 - LIVERPOOL

FUTURE DEVELOPMENTS

We have conducted a preliminary analysis computing nonperturbatively the running down to a scale O(500 MeV) incorporating the NLO in the perturbative part of the study and solving the problem that appears for $N_f = 3$.

In order to evaluate the value of $\varepsilon^{\text{theor}}$ we are planning to perform the following computations:

- bare tm-QCD matrix elements estimated on Wilson gauge configurations (CLS);
- **a** non-perturbative evaluation of the renormalisation constants in the χ SF at the hadronic scale (~ 500 MeV) at the lattice spacings of the CLS ensembles.

Thank you

BACKUP

NORMALISATION SCHEMES COMPARISON - 2|3

RG running of ΔF = 2 FFO from step-scaling matrices

RICCARDO MARINELLI 01/08/2024 - LIVERPOOL

NORMALISATION SCHEMES COMPARISON - 4

RG running of ΔF = 2 FFO from step-scaling matrices

RICCARDO MARINELLI 01/08/2024

20

$W(\mu)$ DEFINITION ISSUES

\blacktriangleright W(µ) is the solution of the equation

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \mathbf{W}(\mu) = [\boldsymbol{\gamma}[\bar{g}(\mu)], \mathbf{W}(\mu)] - \beta[\bar{g}(\mu)] \left(\frac{\boldsymbol{\gamma}[\bar{g}(\mu)]}{\beta[\bar{g}(\mu)]} - \frac{\boldsymbol{\gamma}^{(0)}}{\bar{g}(\mu)b_0}\right) \mathbf{W}(\mu)$$

admitting the perturbative expansion

$$\mathbf{W}(\mu) = \mathbf{1} + \bar{g}^2(\mu)\mathbf{J}_1 + \bar{g}^4(\mu)\mathbf{J}_2 + \bar{g}^6(\mu)\mathbf{J}_3 + \dots$$

that implies

$$2\mathbf{J}_1 - \left[\frac{\boldsymbol{\gamma}_0}{b_0}, \mathbf{J}_1\right] = \frac{b_1}{b_0}\frac{\boldsymbol{\gamma}_0}{b_0} - \frac{\boldsymbol{\gamma}_1}{b_0}$$

Non-invertible system of equations if $N_{\rm f} = 3$ (or 30) !