

RG RUNNING FROM STEP-SCALING MATRICES IN χ **SF SCHEMES FOR** $\Delta F = 2$ **FOUR-FERMION OPERATORS**

RICCARDO MARINELLI

("Sapienza" Università di Roma)

in collaboration with

I. Campos Plasencia, G.M. De Divitiis, M. Dalla Brida, A. Lytle, M. Papinutto, A. Vladikas.

01/08/2024

Lattice 2024 - Liverpool 1

MOTIVATIONS

- Future goal: accurate evaluation of the CP-violating angle δ of the **CKM matrix**
- K^0 − $\bar K^0$ oscillations in the SM are sensitive to loop effects, and so to **BSM contributions**

RG running of $\Delta F = 2$ **FFO from step-scaling matrices** $\int_{0.08/2024}$ **RICCARDO MARINELLI**

Indirect investigation of CP violation: ε parameter

$$
\varepsilon^{\text{theor}}(\delta) = \frac{A(K_L \to (\pi \pi)_{I=0})}{A(K_S \to (\pi \pi)_{I=0})} \propto \tilde{U}(\mu) \langle \bar{K}^0 | \mathbf{Q}(\mu) | K^0 \rangle F(\delta)
$$

To be evaluated non-perturbatively

Comparing $\varepsilon^{\text{theor}}$ **with its experimental estimate we obtain**

in the SM:

- **1. new estimate of the phase** *δ*
- **2. non-perturbative uncertainties 2. bounds to BSM contributions**

beyond the SM:

- **1.** δ kept to the current estimate
-

$K^0 - \bar{K}^0$ oscillations

Effective Hamiltonian for K oscillations:

SM:
$$
H_{\text{eff}}^{\Delta S=2} = \tilde{U}_1 Q_1
$$
 BSM: $H_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^{5} \tilde{U}_i Q_i + \sum_{i=1}^{3} \tilde{U}'_i \tilde{Q}_i$
\n**Only one relevant operator An operator basis** Q_i

Transition amplitudes are calculated with

$$
\langle \bar{K}^0 | H_{\rm eff}^{\Delta S=2} | K^0 \rangle
$$

The renormalisation introduces an energy-scale in the matrix elements and in the Wilson coefficients:

$$
\langle \bar{K}^0 | H_{\text{eff}}^{\Delta S=2} | K^0 \rangle_{\text{conservation}}^{\text{parity}} = \tilde{U}_i(\mu) \langle \bar{K}^0 | \mathbf{Q}_i(\mu) | K^0 \rangle
$$

FEATURES

- **Running evaluation with 3 quark flavours in the sea down to** $\sim 4 {\rm GeV}$ with SF coupling;
- **Running evaluation down to** $\sim 500MeV$ with Gradient Flow (GF) **coupling;**
- **New theoretical formulation of the operator running and mixing in the perturbative regime for** $N_f = 3$.

A difference often observed between PT and non-PT results at 3GeV (the scale at which matrix elements in FLAG are renormalised), could be relevant in the estimate of quantities like *ε*(*δ*)

• Inconsistencies between different estimates

• Some results refer to perturbative renormalisation

RG running of $\Delta F = 2$ **FFO from step-scaling matrices** $\begin{bmatrix} \text{RICCARDO MARKI} \\ \text{O1/O8/2024} \end{bmatrix}$ 6

THE ΧSF

In the continuum we map the SF into the χSF with a chiral rotation: \sum

$$
\psi' = R\left(\frac{\pi}{2}\right)\psi, \quad \bar{\psi}' = \bar{\psi}R\left(\frac{\pi}{2}\right), \quad R(\alpha) = e^{\frac{i}{2}\alpha\gamma_5\tau^3}
$$

Correspondence between correlation functions in the SF and χSF:

$$
\langle O[\psi,\bar{\psi}]\rangle_{\rm SF}^{\rm cont} = \langle O\left[R\left(\pi/2\right)\psi,\bar{\psi}R\left(\pi/2\right)\right]\rangle_{\chi\rm SF}^{\rm cont}
$$

 $\sum_{i=1}^{n}$ The boundary rotation removes $\mathcal{O}(a)$ effects in the observables!

$$
\left\langle O_{\text{even}} \right\rangle_{\text{c}} = \left\langle O_{\text{even}} \right\rangle_{\text{c}}^{\text{cont}} + \mathcal{O}(a^2)
$$

FOUR-FERMION OPERATORS RENORMALISATION

Four-Fermion Operators (FFO):

$$
\mathcal{O}_{[\Gamma_1 \Gamma_2 \pm \Gamma_2 \Gamma_1]}^{\pm} := \mathcal{O}_{[\Gamma_1 \Gamma_2]}^{\pm} \pm \mathcal{O}_{[\Gamma_2 \Gamma_1]}^{\pm} ,
$$

$$
\mathcal{O}_{[\Gamma_1 \Gamma_2]}^{\pm} := \frac{1}{2} \Big[\Big(\bar{\psi}_1 \Gamma_1 \psi_2 \Big) \Big(\bar{\psi}_3 \Gamma_2 \psi_4 \Big) \pm \Big(\bar{\psi}_1 \Gamma_1 \psi_4 \Big) \Big(\bar{\psi}_3 \Gamma_2 \psi_2 \Big) \Big]
$$

Parity-odd operators:

$$
\begin{aligned}\n\mathcal{Q}_1^{\pm} &= \mathcal{O}_{[VA+AV]}^{\pm} & \mathcal{Q}_3^{\pm} &= \mathcal{O}_{[PS-SP]}^{\pm} & \mathcal{Q}_5^{\pm} &= -2\mathcal{O}_{[T\tilde{T}]}^{\pm} \\
\mathcal{Q}_2^{\pm} &= \mathcal{O}_{[VA-AV]}^{\pm} & \mathcal{Q}_4^{\pm} &= \mathcal{O}_{[PS+SP]}^{\pm} & \mathcal{Q}_5^{\pm} &= -2\mathcal{O}_{[T\tilde{T}]}^{\pm}\n\end{aligned}
$$

Behaviour under renormalisation as in a regularisation with exact chiral symmetry:

$$
\begin{pmatrix} \bar{\mathcal{Q}}_1^{\pm} \\ \bar{\mathcal{Q}}_2^{\pm} \\ \bar{\mathcal{Q}}_3^{\pm} \\ \bar{\mathcal{Q}}_4^{\pm} \\ \bar{\mathcal{Q}}_5^{\pm} \end{pmatrix} = \begin{pmatrix} \mathcal{Z}_{11} & 0 & 0 & 0 & 0 \\ 0 & \mathcal{Z}_{22} & \mathcal{Z}_{23} & 0 & 0 \\ 0 & \mathcal{Z}_{32} & \mathcal{Z}_{33} & 0 & 0 \\ 0 & 0 & 0 & \mathcal{Z}_{44} & \mathcal{Z}_{45} \\ 0 & 0 & 0 & \mathcal{Z}_{54} & \mathcal{Z}_{55} \end{pmatrix} \begin{pmatrix} \mathcal{Q}_1^{\pm} \\ \mathcal{Q}_2^{\pm} \\ \mathcal{Q}_3^{\pm} \\ \mathcal{Q}_4^{\pm} \\ \mathcal{Q}_5^{\pm} \end{pmatrix}
$$

EVOLUTION MATRICES

- **Evolution matrices between two scales:**
- $\mathcal{Q}_i(\mu_2) = U_{ij}(\mu_2, \mu_1) \mathcal{Q}_i(\mu_1)$
- $\mathbf{U}(\mu_2, \mu_1) =: \left[\hat{\mathbf{U}}(\mu_2)\right]^{-1} \hat{\mathbf{U}}(\mu_1)$ ̂ **Evolution matrices down to a scale** $U(\mu)$:
- **Problem:** for $N_{\rm f} = 3$ (and 30) two eigenvalues of γ_0/β_0 accidentally satisfy the \bm{r} esonance condition $\lambda_i - \lambda_j = 2$, making it impossible to adopt the usual **definition**

$$
\tilde{\mathbf{U}}(\mu) = \left[\frac{\bar{g}^2(\mu)}{4\pi}\right]^{-\frac{\gamma_0}{2b_0}} \mathbf{W}(\mu)
$$

Problem solved in the past for the two-scale operator $U(\mu_2, \mu_1)$, but a single**scale evolution operator is needed to represent a Wilson coefficient**

WILSON COEFFICIENTS FROM THE POINCARÉ-DULAC THEOREM

γ(*g*) The connection $A(g) = \frac{f(8)}{g(8)}$ can be set [2013.16220v3] in its canonical *β*(*g*) **form** $\mathbf{A}^{\text{can}}(g) = \frac{1}{g} \left(\mathbf{\Lambda} + g^2 \mathbf{N}_2 \right)$ upper-diagonal **diagonal** $\mathbf{S}(g) \simeq \left(1 + \sum_{l=1}^n \mathbf{H}_{2k} g^{2k}\right) \mathbf{S}_{\mathrm{D}} \equiv \mathbf{s}_n(g) \mathbf{S}_{\mathrm{D}}$ **through a change of operator basis**

The evolution operator can be evaluated and then rotated back to the original operator basis:

$$
\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} \exp\left(-\frac{1}{2}\mathbf{\Lambda}\ln(u)\right) \exp\left(-\frac{1}{2}\mathbf{N}_2\ln(u)\right) \mathbf{s}_n(u)\mathbf{S}_{\mathrm{D}}
$$

STEP-SCALING FUNCTIONS

Non-perturbative evolution from the step-scaling functions (SSF):

$$
\boldsymbol{\sigma}(u) := \mathbf{U}(\mu/2, \mu) \Big|_{\bar{g}^2(\mu) = u} \longrightarrow \mathbf{U}(u_{\text{had}}, u_{\text{pt}}) = \boldsymbol{\sigma}(u_1) \cdots \boldsymbol{\sigma}(u_N)
$$

 $\mathbf{\Sigma}\!\left(g_0^2,\frac{a}{L}\right):=\mathcal{\boldsymbol{Z}}\!\left(g_0^2,\frac{a}{2L}\right)\!\left[\mathcal{\boldsymbol{Z}}\!\left(g_0^2,\frac{a}{L}\right)\right]^{-1}$ **Discrete step-scaling functions:**

 (g^2) lattice artefacts in the SF energy region removed using **subtracted SSF [2112.10606] :**

$$
\tilde{\mathbf{\Sigma}}\left(u,\frac{a}{L}\right):=\mathbf{\Sigma}\left(u,\frac{a}{L}\right)[\mathbf{1}+u\log(2)\boldsymbol{\delta}_k(a/L)\boldsymbol{\gamma}_0]^{-1}
$$

SSF CONTINUUM EXTRAPOLATION

Global fits are performed with the ansatz

$$
\tilde{\boldsymbol{\Sigma}}\bigg(u_n,\frac{a}{L}\bigg)\bigg]_{ij} = \left[\boldsymbol{\sigma}(u_n)\right]_{ij} + \left(\frac{a}{L}\right)^2\sum_{m=0}^2{[\boldsymbol{\rho}_m]_{ij}u_n^m}
$$

Parameters found by χ^2 **minimisation**

L = 6,8,12 for SF coupling, L = 8,12,16 for GF coupling

RG running of $\Delta F = 2$ **FFO from step-scaling matrices** $\int_{0^{1/08/2024}}^{RICCARDO MARINELLI}$

EVOLUTION MATRICES FROM SSF

ERROR ESTIMATES -8

The non-perturbative running is finally given by ii-perturbative rui e non-norturbativo running je finally gi $\overline{\mathbf{p}}$

$$
\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} \exp\left(-\frac{\mathbf{\Lambda}}{2} \ln u_{\mathrm{pt}}\right) \exp\left(-\frac{\mathbf{N}_{2}}{2} \ln u_{pt}\right) \mathbf{s}_{n}(g) \mathbf{S}_{\mathrm{D}}[\mathbf{U}(u, u_{\mathrm{pt}})]^{-1}
$$

- **Statistical errors: propagation from the fits** -0.5
- **Systematic errors (guess) :**
	- **• Lack of knowledge on higher** orders of the anomalous **dimension** -2.5
	- **•** Differences arising if L=6 is **included or not**

NP RUNNING: BSM 2|3 INDICES

RG running of $\Delta F = 2$ **FFO from step-scaling matrices** $\int_{0^{1/08/2024} - LIVERPool}^{RICCARDO MARNELLI}$

NP RUNNING: BSM 4|5 INDICES

RG running of $\Delta F = 2$ **FFO from step-scaling matrices** $\int_{0^{1/08/2024} - LIVERPool}^{RICCARDO MARNELLI}$

FUTURE DEVELOPMENTS

We have conducted a preliminary analysis computing nonperturbatively the running down to a scale $\mathcal{O}(500\,\mathrm{MeV})$ incorporating **the NLO in the perturbative part of the study and solving the problem that appears for** $N_f = 3$ **.**

In order to evaluate the value of ε^theor we are planning to perform the **following computations:**

- **bare tm-QCD matrix elements estimated on Wilson gauge configurations (CLS);**
- **a non-perturbative evaluation of the renormalisation constants in the χSF at the hadronic scale (** \sim **500MeV) at the lattice spacings of the CLS ensembles.**

Thank you

BACKUP

NORMALISATION SCHEMES COMPARISON - 2|3

RG running of $\Delta F = 2$ **FFO from step-scaling matrices** $\int_{0^{1/08/2024} - LIVERPool}^{RICCARDO MARINELL}$

19

NORMALISATION SCHEMES COMPARISON - 4|5

RG running of $\Delta F = 2$ **FFO from step-scaling matrices** $\begin{bmatrix} \text{RICCARDO MARINELLI} \\ 01/08/2024 \end{bmatrix}$ 20

W(*μ*) **DEFINITION ISSUES**

W(μ) is the solution of the equation

$$
\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \mathbf{W}(\mu) = [\gamma[\bar{g}(\mu)], \mathbf{W}(\mu)] - \beta[\bar{g}(\mu)] \left(\frac{\gamma[\bar{g}(\mu)]}{\beta[\bar{g}(\mu)]} - \frac{\gamma^{(0)}}{\bar{g}(\mu)b_0} \right) \mathbf{W}(\mu)
$$

admitting the perturbative expansion

$$
\mathbf{W}(\mu) = \mathbf{1} + \bar{g}^2(\mu)\mathbf{J}_1 + \bar{g}^4(\mu)\mathbf{J}_2 + \bar{g}^6(\mu)\mathbf{J}_3 + \dots
$$

that implies

$$
2\mathbf{J}_1 - \left[\frac{\gamma_0}{b_0}, \mathbf{J}_1\right] = \frac{b_1}{b_0} \frac{\gamma_0}{b_0} - \frac{\gamma_1}{b_0}
$$

Non-invertible system of equations if $N_f = 3$ **(or 30)!**