

Non-singlet axial current improvement for massless and massive sea quarks

Justus Kuhlmann Patrick Fritzsch, Jochen Heitger

living.knowledge

Relevance for further improvement and physics

- ▶ exp. Wilson-clover fermion framework
- ▶ massive $\hat{=}$ at $N_{\rm f} = 3$ symmetric point

Relevance for further improvement and physics

- ► exp. Wilson-clover fermion framework
- ▶ massive $\hat{=}$ at $N_{\rm f} = 3$ symmetric point
- needed for improv. quark current mass
- decay constants & matrix elements

Relevance for further improvement and physics

- exp. Wilson-clover fermion framework
- ▶ massive $\hat{=}$ at $N_{\rm f} = 3$ symmetric point
- needed for improv. quark current mass
- decay constants & matrix elements
- ▶ improvement and renormalisation:
 - $\blacktriangleright c_{\rm V}$, $c_{\rm T}$, $Z_{\rm A}$
 - ▶ no c_A ⇒ no improvement of other channels

Determination of c_A

- Schrödinger functional boundary conditions
- ▶ similar to quenched [hep-lat/9609035], $N_{\rm f}=2$ [hep-lat/0503003] and std. Wilson-Clover $N_{\rm f}=3$ [1502.04999, hep-lat/0703006]
- derive from PCAC mass

$$m_{\rm PCAC} = \frac{\partial_0 f_{\rm A}}{2f_{\rm P}} + c_{\rm A} \ a \frac{\partial_0^2 f_{\rm P}}{2f_{\rm P}} = r + c_{\rm A} \ as$$
$$m_{\rm PCAC}^{(0)} = m_{\rm PCAC}^{(1)} \quad \Leftrightarrow \quad c_{\rm A} = -\frac{r^{(1)} - r^{(0)}}{s^{(1)} - s^{(0)}}$$

states (0) and (1) are the PS ground and first excited state in our setup
PCAC relation holds for both

The wavefunction method

construct pseudoscalar states

- ► H-like basis wavefunctions: $\omega_1 = e^{-r/a_0}$, $\omega_2 = r \ e^{-r/a_0}$, $\omega_3 = e^{-r/(2a_0)}$
- ▶ also include $\omega_4 = \text{cons.}$, $\omega_5 = -r^2 \ e^{-r/a_0}$ with $r = |\vec{y} \vec{x}|$

The wavefunction method

construct pseudoscalar states

- ▶ H-like basis wavefunctions: $\omega_1 = e^{-r/a_0}$, $\omega_2 = r \ e^{-r/a_0}$, $\omega_3 = e^{-r/(2a_0)}$
- ▶ also include $\omega_4 = \text{cons.}$, $\omega_5 = -r^2 e^{-r/a_0}$ with $r = |\vec{y} \vec{x}|$

► diagonalise boundary-to-boundary corr. func. $(F_1)_{i,j} = -\langle O(\omega_i)O'(\omega_j)\rangle$

The wavefunction method

construct pseudoscalar states

- ► H-like basis wavefunctions: $\omega_1 = e^{-r/a_0}$, $\omega_2 = r \ e^{-r/a_0}$, $\omega_3 = e^{-r/(2a_0)}$
- ▶ also include $\omega_4 = \text{cons.}$, $\omega_5 = -r^2 \ e^{-r/a_0}$ with $r = |\vec{y} \vec{x}|$
- ► diagonalise boundary-to-boundary corr. func. $(F_1)_{i,j} = -\langle O(\omega_i)O'(\omega_j)\rangle$

• employ eigenvectors of $(F_1)_{i,j}$ to project $f_A(x_0)$ and $f_P(x_0)$ onto the eigenstates

The wavefunction method

construct pseudoscalar states

- ► H-like basis wavefunctions: $\omega_1 = e^{-r/a_0}$, $\omega_2 = r \ e^{-r/a_0}$, $\omega_3 = e^{-r/(2a_0)}$
- ▶ also include $\omega_4 = \text{cons.}$, $\omega_5 = -r^2 e^{-r/a_0}$ with $r = |\vec{y} \vec{x}|$
- ► diagonalise boundary-to-boundary corr. func. $(F_1)_{i,j} = -\langle O(\omega_i)O'(\omega_j) \rangle$
- employ eigenvectors of $(F_1)_{i,j}$ to project $f_A(x_0)$ and $f_P(x_0)$ onto the eigenstates
- ▶ evaluate $c_A(x_0)$ with projected correlation functions
- \blacktriangleright later: choice of x_0 and wavefunction basis is part of the improvement condition

Ensembles

 $T = L \approx 3 \, {\rm fm}$ Schrödinger-Functional ensembles, exp. Wilson-Clover fermions

L/a	β	$\kappa_1 \approx \kappa_{\rm cr}$	κ_2	$\kappa_3 \approx \kappa_{\rm sym}$	$\approx a \; [\text{fm}]$
24	3.685	0.1396980	0.1395500	0.1394400	0.120
32	3.80	0.1392500		0.1389630	0.095
40	3.90	0.1388562	0.1386148	0.1386030	0.080
48	4.00	0.1384942	0.1384880	0.1382720	0.064
56	4.10	0.1381410	0.1380000	0.1379450	0.055
96	4.37				0.035

▶ interested in 2 LCPs: chiral and $N_{\rm f} = 3$ sym. point

matching sym. point of OpenLat [2201.03874]

 $c_{\rm A}$ estimators

Critical point ensembles

Symmetric point ensembles

Interpolation

... to the symmetric and critical point

- ensembles not exactly tuned
- \blacktriangleright able to interpolate to the desired points due to 2 or 3 ensembles per β
- determine points of interest as in OpenLat ensembles [2201.03874]
- define:

$$\Phi_4^{\rm SF} = \frac{3}{2} \, 8t_0 \, |m_{\rm eff}| \, m_{\rm eff} \quad \Rightarrow \quad \Phi_4^{\rm SF} \, \big|_{m_{0,\rm cr}} = 0 \,, \, \Phi_4^{\rm SF} \, \big|_{m_{0,\rm sym}} = 1.115$$

Finding the symmetric and chiral point

Interpolations in c_A

Interpolations in g_0^2

First scaling test of improvement

- Example: Calculate $f_{\pi K}$ with stabilised Wilson fermions
- symmetric point OpenLat ensembles
- improve with $c_A = 0$ vs $c_A(g_0^2)|_{chi}$ vs $c_A(g_0^2)|_{sym}$

$$f_{\pi K}^{\rm RI} = Z_{\rm A} (1 + b_{\rm A} a m_{\rm q} + \bar{b}_{\rm A} a {\rm Tr}[M_{\rm q}]) \frac{\sqrt{2} \mathcal{A}_{\rm A_0 P}}{\sqrt{\mathcal{A}_{\rm PP} m_{\pi}}}$$

with $C_{XX} \propto \mathcal{A}_{XX} \mathrm{e}^{-mx_0}$

 \blacktriangleright renormalisation: Z_{A} preliminary, b_{A} from pert. theory, $ar{b}_{\mathrm{A}}$ neglected

First scaling test of improvement Results

Outlook

- \blacktriangleright finish $Z_{\rm A}$, $Z_{\rm V}$, $b_{\rm V}$ and $\bar{b}_{\rm V}$ through SF
- further improvement and renormalisation currently in the works:
 - \blacktriangleright vector and tensor current improvement ($c_{
 m V}$, $c_{
 m T}$)
 - current quark mass renormalisation $(b_{\rm A} b_{\rm P}, b_m, Z)$
 - \blacktriangleright determination of $Z_{\rm A},\,Z_{\rm V},\,Z_{\rm S}/Z_{\rm P}$ through $\chi {\rm SF}$

Backup Δr and Δs behaviour

Backup Behaviour of $f_{\rm P}$ projected

