Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Wong¹, Julius Kuti²

Determination o $\alpha_S(m_Z)$

 $N_f = 0$ model

LATTICE 202 Results

Improvements

Conclusion

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

On behalf of LatHC collaboration

1: University of Wuppertal 2: University of Carlifornia, San Diego

LATTICE 2024

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

LATTICE 20 Results

Improvement

Conclusion

Determination of $\alpha_{S}(m_{Z})$

- Goal: High precision determination of the strong coupling $\alpha_S(m_Z)$ at the Z-pole in QCD with massless $N_f = 3$ fermions.
- The determination of $\alpha_S(m_Z)$, equivalently $\mu^{-1}\Lambda_{\overline{MS}}$, requires integration of the inverse β -function from perturbative regime to the scale of hadron physics at strong coupling.

$$u^{-1} \cdot \Lambda_{\overline{MS}} = (b_0 \bar{g}^2)^{-b_1/2b_0^2}$$

$$\cdot \exp(-1/2b_0 \bar{g}^2) \cdot \exp\left(-\int_0^{\bar{g}} dx [1/\beta(x) + 1/b_0 x^3 - b_1/b_0^2 x]\right)$$

- The integration beyond the perturbative regime requires non-perturbative calculation of the β -function, which can be done on lattice
- On the lattice:
 - g^2 and β -function are not defined in \overline{MS} scheme, but it is not an issue as long as the conversion to $\Lambda_{\overline{MS}}$ is known
 - μ^{-1} is typically r_0 or $\sqrt{8t_0}$ where $\bar{g}^2 = g^2(\mu)$ is known

Determination of $\alpha_{S}(m_{Z})$

Wong¹, Julius Kuti² Determination of

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD. Chik Him (Ricky)

- $\alpha_S(m_Z)$
- $N_{f} = 0 \mod$
- LATTICE 202 Results
- Improvements
- Conclusion

- Since 2017, we developed a variety of high-precision, gradient-flow based strategies utilizing β -function defined in infinite physical volume, applied in the sextet model, $N_f = 10$ and $N_f = 12$ models.
- Our goal is to apply this method on $N_f = 3$ model. In Lattice 2022, we applied this to $N_f = 0$ and $N_f = 10$ as pilot studies.
- It turns out $N_f = 0$, supposedly the simplest case, is already very elaborated

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination $\alpha_S(m_Z)$

 $N_f = 0 \text{ model}$

LATTICE 202 Results

Improvements

Conclusion

$N_f = 0$ model

- The FLAG 2019 world average summarizes studies prior to GF-based determinations
- The GF-based determination by Dalla Brida & Ramos 2019 significantly deviates from FLAG 2019 world average, creating tension with previous studies
- Our results, Wong et al 2023(PoS 2022), agrees with Dalla Brida & Ramos 2019
- Hasenfratz et al 2023, using the same approach as us, got very consistent results with us and worsens the tension

				Has	enfrata	et al 3	2023		
						+	-		
					Wor	ng et a	2023		
							-		
				Dal	la Brid:	a & Rar	nos 20	19	
	_								
	 FLA	+				-			
	FLA	G 201	э						
	 	•—							
 0.18	 6.45	0.67			0.42		0.47		

• (Related topic in Alberto Ramos' talk in this session)

$N_f = 0$ model

infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD. Chik Him (Ricky) Wong¹, Julius

Progress on the

Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0 \text{ model}$

LATTICE 202 Results

Improvements

Conclusion

- The error in our preliminary result reported in Wong et al 2023: $\approx 1.4\%$
- FLAG 2024(to be published) decides to add a dedicated section about GF-based determinations
- Their criticism towards our work:
 - "We conclude that at this reference coupling a determination of the Λ -parameter to better than 5 % seems impossible"
- This motivates us to improve our dataset and analysis to check whether this is the case
- In this talk, we discuss the progress on such investigation

LATTICE 2022 Results

infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD. Chik Him (Ricky) Wong¹, Julius Kuti²

Progress on the

Determination of

 $\alpha_S(m_Z)$

 $N_f = 0 \mod 1$

LATTICE 2022 Results

Improvements

Conclusion

- Simulation details of $N_f = 0$:
 - Symanzik improved *SU*(3) gauge action in periodic boundary conditions
 - Heat-bath + over relaxation $(N_{\text{overrelax}} = 3)$
 - Only improved SSC scheme (definitions in [2203.15847]) is discussed

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD. Chik Him (Ricky)

Chik Him (Ricky Wong¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

LATTICE 2022 Results

Improvements

Conclusion

LATTICE 2022 Results

• Methodology:

- $g^2(t)$ is defined in infinite physical volume with Gradient Flow schemes at flow time t
- $\beta(g^2(t)) = t \cdot dg^2(t)/dt$ is obtained, approximated by 5-point stencil
- Infinite volume limit \Rightarrow Target $g^2 \Rightarrow$ Continuum limit
- Scan g^2 values from weak to strong coupling regimes up to $g^2(t_0)$

LATTICE 2022 Results

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0 \mod$

LATTICE 2022 Results

Improvements

Conclusion

Methodology:

- $g^2(t)$ is defined in infinite physical volume with Gradient Flow schemes at flow time t
- $\beta(g^2(t)) = t \cdot dg^2(t)/dt$ is obtained, approximated by 5-point stencil
- Infinite volume limit \Rightarrow Target $g^2 \Rightarrow$ Continuum limit
- Scan g^2 values from weak to strong coupling regimes up to $g^2(t_0)$

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0 \bmod 1$

LATTICE 2022 Results

Improvements

Conclusion

LATTICE 2022 Results

- Numerical data is not available for $g^2 < g_{PT}^2 = 1.2$
- Assume that β -function is well-described by the known 3-loop perturbative GF β -function($\beta_{\text{GF}}^{3-\text{loop}}$)[JHEP06(2016)161] at $g^2 < g_{\text{PT}}^2$
- $\sqrt{8t_0} \Lambda_{\rm GF}$ is obtained by :
 - Integrating $\beta_{\rm GF}^{3-\rm loop}$ from 0 to $g_{\rm PT}^2$
 - Integrate a spline-fit using data between g_{PT}^2 and $g^2(t_0)$
- Convert Λ_{GF} into Λ_{MS} using the well known 1-loop calculation
- Convert $\sqrt{8t_0}$ into r_0 with $\sqrt{8t_0}/r_0 = 0.948(7)$ [JHEPO8(2010)071]

• $r_0 \Lambda_{\overline{MS}} = 0.665(9)$ is obtained

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

 $\alpha_S(m_Z)$ $N_f = 0 \mod 1$

LATTICE 2022 Results

Improvements

Conclusion

Improvements

- In this talk, we focus on the weak coupling regime $g^2 \le 1.8$
- We have improvements in both dataset and analysis
- The dataset extended by ≈ 20 more ensembles aiming at the weak coupling regime

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda \overline{MS}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination of $\alpha_S(m_Z)$

 $N_f = 0$ model

LATTICE 202 Results

Improvements

Conclusion

• In the LAT 22 analysis, there are very few intersections between targeted g^2 and available data unless $6/g_0^2$ is sampled densely and carefully chosen in the right ranges

• \Rightarrow We modify our analysis as follows: • At each t/a^2 and $6/g_0^2$, take infinite volume limit of g^2 and β

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda \overline{MS}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination or $\alpha_S(m_Z)$

 $N_f = 0$ model

LATTICE 202 Results

Improvements

Conclusion

Improvements

- At each t/a^2 and $6/g_0^2$, take infinite volume limit of g^2 and β
- At each t/a^2 , for a set of target g^2 values, interpolate g^2 and β among $6/g_0^2$ values in infinite volume limit
- Take continuum limit of β at each targeted g^2 values

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda \overline{MS}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination $\alpha_S(m_Z)$

 $N_f = 0 \mod$

LATTICE 202 Results

Improvements

Conclusion

Improvements

- At $g^2 = 1.2$, the difference between 2-loop and 3-loop perturbative β -functions is large and 4-loop is not available
- \Rightarrow Replacement with 3-loop perturbative β -function below g_{PT}^2 may introduce systematic errors coming from unknown higher-order contributions
- The effect can be put under control by fitting β a polynomial with p_3 and p_4 : $\beta(g^2) = g^4(b_0 + b_1 g^2 + b_2 g^4 + p_3 g^6 + p_4 g^8)$, then integrate using the fitted polynomial

Progress on the infinite volume based gradient flow for high precision determination of the $\Lambda_{\overline{MS}}$ scale of QCD.

Chik Him (Ricky) Wong¹, Julius Kuti²

Determination o $\alpha_S(m_Z)$

 $N_f = 0 \mod 1$

LATTICE 202 Results

Improvements

Conclusion

Conclusion

- Result of replacing the three-loop β function with fitted polynomial within $g^2 = 0$ to 1.2 : $r_0 \cdot \Lambda_{\overline{MS}} = 0.658(9)$
- LATTICE 2022: $0.665(9) \quad \Leftarrow 1 \sigma$ difference
- The data at different g^2 are correlated. Correlation fits are required
- The consistency among different schemes, different fit ansatz and different orders of limits remains to be checked
- We will extend the modified analysis into the range $g^2 > 1.2$

• The limit $g_{\rm PT}^2 \rightarrow 0$ needs to be taken

