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Why real-time?

Many (most?) applications of lattice field theory concern the 
computation of correlators in equilibrium, allowing Monte 
Carlo sampling of a Euclidean action field theory. 

Very successful, Lattice 1992-2024….

Out-of-equilibrium systems are initial value problems, where 
some initial state evolves in real time towards a (usually 
unknown) final (equilibrium) state. 

Lattice discretization of such systems is used in many contexts:
• Baryogenesis.
• (initial stages of) Heavy-Ion collision dynamics.
• Phase transition dynamics.
• Gravitational wave production.
• Inflation and preheating.
• Cosmic strings/monopoles/domain walls/textures…
• …



Why real-time?

This talk: 
• Some background for those unfamiliar with 

the topic. 
• The problem(s).
• Solution #1: Classical-statistical.
• Solution #2: Schwinger-Dyson eqs.
• Solution #3: Going complex (briefly).
• Examples, not complete review.

Not this talk:
• AI, Quantum computing, …
• Equilibrium quantities used for real-time 

using linear response.
• Real-time correlators in equilibrium. 
• Comprehensive review of state-of-the-art.

Many (most?) applications of lattice field theory concern the 
computation of correlators in equilibrium, allowing Monte 
Carlo sampling of a Euclidean action field theory. 

Very successful, Lattice 1992-2024….

Out-of-equilibrium systems are initial value problems, where 
some initial state evolves in real time towards a (usually 
unknown) final (equilibrium) state. 

Lattice discretization of such systems is used in many contexts:
• Baryogenesis.
• (initial stages of) Heavy-Ion collision dynamics.
• Phase transition dynamics.
• Gravitational wave production.
• Inflation and preheating.
• Cosmic strings/monopoles/domain walls/textures…
• …



At Lattice 2024
Contributions scattered over the parallel and poster sessions:

• Eduardo Garnacho-Velasco: In/out of eq. CME (finite T QCD).
• Francesco d’Angelo: QCD sphaleron rate (finite T QCD).

• Michael Mandl, Paul Hotzy, Gert Aarts, Diaa Eddin Habibi: Complex Langevin (algo. & AI).
• Joshua Swaim: Vacuum decay (algo. & AI).
• Scott Lawrence: Real time dynamics (algo. & AI).

• Alexander Rothkopf: Classical dynamics and symmetries (theor.).
• David Weir: Bubble nucleation (theor.).

• Michael Hansen: Complex Langevin Stabilization (finite density).

• Riikka Seppä: SU(8) bubble nucleation (poster).

• Denes Sexty: Real time Scalar fields (appl. outside PP).

Go check out live or poster or uploaded slides!



Introduction: Path integrals



In Quantum (Field) Theory, we often want to compute 
observables inside the real-time transition amplitude 
from one state to another:

is the quantum Hamiltonian operator, expressed in 
terms of the field operators             . �̂(x, t)

h2, t2|O(�̂)|1, t1i =

Z
D� eiS[�]

O(�)

Ĥ

This may be rewritten as a path integral:

Where S is the Lagrangian, expressed in terms of the 
fields, living on a time-contour in the complex plane, 
called     : [              ].

The integral is over “paths”, field configurations in 3+1 
dimensions. May want to “wick rotate” to complex 
time, Euclidean action. 

�1,1

h2, t2|...|1, t1i = h2|e�iĤ(t2�t1)|1i

R



In Quantum (Field) Theory, we often want to compute 
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Where S is the Lagrangian, expressed in terms of the 
fields, living on a time-contour in the complex plane, 
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dimensions. May want to “wick rotate” to complex 
time, Euclidean action. 

This may be rewritten as a path integral:

Where S is the Lagrangian, expressed in terms of the 
fields, living on a time-contour in the complex plane 
[0,-i/T].

The integral is over “paths”, field configurations in 3+1 
dimensions, periodic in “time”.
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O(�̂)|ni

h2, t2|O(�̂)|1, t1i =

Z
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Ĥ Ĥ

This may be rewritten as a path integral:

Where S is the Lagrangian, expressed in terms of the 
fields, living on a time-contour in the complex plane, 
called     : [              ].

The integral is over “paths”, field configurations in 3+1 
dimensions. May want to “wick rotate” to complex 
time, Euclidean action. 

This may be computed order by order in perturbation theory. But not 
all physics is captured by such an expansion à put in on the lattice, 

compute it non-perturbatively.

This may be rewritten as a path integral:

Where S is the Lagrangian, expressed in terms of the 
fields, living on a time-contour in the complex plane 
[0,-i/T].

The integral is over “paths”, field configurations in 3+1 
dimensions, periodic in “time”.
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Sometimes, one wants to actually calculate 
correlators with a physical time-separation:

In equilibrium:

This may be rewritten as a path integral

Where S is the Lagrangian, expressed in terms of 
the fields, living on a time-contour in the complex 
plane, called C, the Keldysh (or Schwinger-
Keldysh) contour:

h�̂(t2)�̂(t1)i = Tr⇢̂(t)�̂(t2)�̂(t1) =
X

n

hn|e�Ĥ/T e�iĤ(t0�t2)�̂ e�iĤ(t2�t1)�̂ e�iĤ(t1�t0)|ni

Z
D� eiS[�]�(t2)�(t1)

-i/T

Identify 
start and 
endpoint



Sometimes, one wants to actually calculate 
correlators with a physical time-separation:

In equilibrium:

This may be rewritten as a path integral

Where S is the Lagrangian, expressed in terms of 
the fields, living on a time-contour in the complex 
plane, called C, the Keldysh (or Schwinger-
Keldysh) contour:

h�̂(t2)�̂(t1)i = Tr⇢̂(t)�̂(t2)�̂(t1) =
X
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hn|e�Ĥ/T e�iĤ(t0�t2)�̂ e�iĤ(t2�t1)�̂ e�iĤ(t1�t0)|ni

Z
D� eiS[�]�(t2)�(t1)

Out of equilibrium:

This may be rewritten as a path integral

Where S is the Lagrangian, expressed in terms of 
the fields, living on a time-contour in the complex 
plane, also called C, the Keldysh (or Schwinger-
Keldysh) contour:

h�̂(t2)�̂(t1)i = Tr⇢̂(t)�̂(t2)�̂(t1) =
X

n

⇢nhn|e�iĤ(t0�t2)�̂ e�iĤ(t2�t1)�̂ e�iĤ(t1�t0)|ni

The initial density matrix need not be the 
equilibrium one. It could be any initial state.

Z
D� eiS[�]�(t2)�(t1)h�+

0 |⇢|�
�
0 i

-i/T

h�+
0 |⇢|�

�
0 i

Initial condition

Identify 
start and 
endpoint



The problem



But now we are in trouble!

Is not a probability distribution, that one may 
sample using importance sampling.

Alternatively, interpreting the complex phase as 
part of the observable, 

Converges very slowly, and the denominator is 
close to zero.

P [�] =?
eiS[�]

R
D� eiS[�]

hO(�)i =?
heiSO(�)i

heiSi

The sign problem arises whenever iS is complex, and when 
one cannot simply Wick rotate time t -> it and make it real:

• Equilibrium with local observables: ok as is!
• Vacuum-to-vacuum transitions: ok after Wick rotation!

• Equilibrium with time-separated observables: Not ok!
• Out-of-equilibrium processes: Not ok!
• When the system has a chemical potential

• iS is imaginary,         is real: Not ok!
• Wick-rotate -> vice versa: Not ok!

µN

Complex 
t-plane

Cannot solve the sign problem by
Complexifying the time variable. 

The “Sign” problem. “Exponentially hard”.
Give up? Go home? 



Solution #1: Classical-Statistical approximation



Solution #1: Classical-Statistical approximation

Z
D� eiS[�]�(t2)�(t1)h�+

0 |⇢|�
�
0 i

h�+
0 |⇢|�

�
0 i

Initial condition

Simple statement: 
• Consider only initial states ⍴ that are easily sample-able (like a

Gaussian state). Or MC the initial state. 
• Never mind sampling the inside path integral. Replace by the 

saddle point for each initial configuration, the classical path. 



Solution #1: Classical-Statistical approximation

Z
D� eiS[�]�(t2)�(t1)h�+

0 |⇢|�
�
0 i

h�+
0 |⇢|�

�
0 i

Initial condition

Slightly less simple statement:
• “Double” field variables by labelling with t and +/-

branch.
• Redefine into Keldysh basis

• Neglect all instances of               in the action.
• Integrate out      à classical eom for      . 

�cl =
1

2

�
�+ + ��� , �q = �+ � ��

(�q)>2

�q �cl

cl-cl: F

q-q: ⍴

Statistical propagator:                         ~ n

Spectral propagator:                          ~ 1

F = h{�,�}i

⇢ = h[�,�]i

Good approximation when
F 2 � ⇢2

Aarts, Smit: 1997, 
AT, Saffin, Mou, Millington: 2021

��
4Simple statement: 

• Consider only initial states ⍴ that are easily sample-able (like a
Gaussian state). Or MC the initial state. 

• Never mind sampling the inside path integral. Replace by the 
saddle point for each initial configuration, the classical path. 



Bubbles colliding in a first order transition.
Cutting, Hindmarsh, Weir: 2018

Energy density spectra at 
preheating after inflation.

Figueroa, Torrenti: 2017

Occupation numbers during turbulent 
cascade equilibration. Berges, Boguslavski, 

Schlichting, Venugopalan: 2014 

Energy density distribution near an 
advancing bubble wall.

Saffin, Mou, AT: 2020

Standard lattice discretization allows for solving numerically:
• Draw initial conditions. 
• Solve equations of motion. 
• Compute observables as ensemble averages. 
• Make sure that volume size and resolution is sufficient.
• Numerically easy (allows for large lattices). 
• Scalar fields, gauge fields, strawberry fields, … 
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Energy density spectra at 
preheating after inflation.

Figueroa, Torrenti: 2017

Occupation numbers during turbulent 
cascade equilibration. Berges, Boguslavski, 

Schlichting, Venugopalan: 2014 

Energy density distribution near an 
advancing bubble wall.

Saffin, Mou, AT: 2020

Bubbles colliding in a first order transition.
Cutting, Hindmarsh, Weir: 2018

Standard lattice discretization allows for solving numerically:
• Draw initial conditions. 
• Solve equations of motion. 
• Compute observables as ensemble averages. 
• Make sure that volume size and resolution is sufficient.
• Numerically easy (allows for large lattices). 
• Scalar fields, gauge fields, strawberry fields, … 

Only reliable when occupation numbers are large, F is large!
Does not give the correct equilibrium state, nor late-time behaviour.

Excellent for intermediate-time out-of-equilibrium dynamics!



What about fermions; they do not acquire large occupation numbers?

Fermions tend to occur as bi-linears in the action à linear 
evolution equations. Allows for mode expansion: 

 (x, t) =
X

k,s

vsak,sfk,s(x, t)

• Solve for fermions in the classical scalar/gauge  field background. 
• Include back-reaction through time-dependent expectation values

of fermion bilinears in classical scalar and gauge field equations of 
motion. 

Aarts, Smit: 1998.
Hindmarsh, Borsanyi: 2009
AT, Berges, Schlichting, Mou, Saffin, …

0 10 20 30 40
mHt

-1.5

-1

-0.5

0

0.5

1

1.5

N
cs

, N
f, 

N
w

, H
ig

gs

Higgs
Ncs
Nw
Nf = (B+L)/2

Figure 6: A tachyonic transition with (full) and without (dashed) fermion back-reaction,

starting from the exact same initial condition. Shown are the trajectories of the Chern-

Simons number (red), the average Higgs field squared (black) the Higgs winding number

(green) and the fermion number (blue).

0 10 20 30 40
mHt

-1.5

-1

-0.5

0

0.5

1

1.5

N
cs

, N
f, 

N
w

, H
ig

gs

Higgs
Ncs
Nw
Nf = (B+L)/2

Figure 7: A full tachyonic run including fermion backreaction and Yukawa coupling. The

fermion mass is mf ≃ 1.4GeV.

charm quark. As for the sphaleron runs, we see that the agreement is only approximate,

but clearly the anomaly is reproduced, improveable with larger statistics.

– 12 –

Cold Baryogenesis, Nw, Ncs, Nf
AT, Saffin: 2011

Schwinger pair production
Spitz, Berges: 2018



Solution #2: Schwinger-Dyson equations (2PI)



The incorrect equilibration may be ameliorated through 
a better treatment of the UV.
• Scale separation + effective IR dynamics with cutoff. 
• Scale separation + Hard loops in UV.
• Stochastic noise/kinetic theory.

My personal favourite: Real-time Schwinger-Dyson 
equation based on truncation of 2PI effective action. 

• Provides self-consistent evolution equations for
full correlation functions. 

• Beyond LO, involves memory integrals to the 
initial time. 

• Conveniently discretized through a lattice action 
(or ad hoc). 

• Conserves energy, Goldstone theorem, Ward 
identities, renormalisability.

• Thermalises to quantum equilibrium.
• Reliable also for small occupation numbers.
• Systematically improvable. 

(�̄a = 0) and spatial homogeneity allows to further simplify Fab(x, y) = �abF (x� y, t, t0)

and ⇢ab(x, y) = �ab⇢(x� y, t, t0). We may similarly decompose the self-energy into two

components

⌃ab(x, y) = ⌃F �ab(x, y)�
i

2
⌃⇢�ab(x, y)signC(x

0
� y0), (3.13)

Inserting this decomposition into eq. (3.7), one obtains the real-time equations of motion

for F and ⇢:

⇣
@2

t � @2

x +M2(x)
⌘
F (x, y) =�

Z
x
0

0

dz0
Z

d3z⌃⇢(x, z)F (z, y)

+

Z
y
0

0

dz0
Z

d3z⌃F (x, z)⇢(z, y), (3.14)

⇣
@2

t � @2

x +M2(x)
⌘
⇢(x, y) =�

Z
x
0

y0
dz0

Z
d3z⌃⇢(x, z)⇢(z, y). (3.15)

We note that the evolution equations are explicit, and depend on the entire past history of

the evolution through the time integrals over the self-energy and propagator components.

The local parts of the self-energies are accounted for in the e↵ective mass

M2

LO(t) = m2 +
�

6
F (0, t, t), M2

NLO(t) = M2

LO(t) +
�

3N
F (0, t, t). (3.16)

At NLO the non-local self energies are given by

⌃⇢(x, y) = �
�

3N

⇣
F (x, y)I⇢(x, y) + ⇢(x, y)IF (x, y)

⌘
, (3.17)

⌃F (x, y) = �
�

3N

⇣
F (x, y)IF (x, y)�

1

4
⇢(x, y)I⇢(x, y)

⌘
, (3.18)

where the 1/N resummation is performed through the objects IF,⇢, that in turn satisfy6

I⇢(x, y) =�
�

3

Z
x
0

y0
d3zI⇢(x, z)F (z, y)⇢(z, y) +

�

3
F (x, y)⇢(x, y), (3.19)

IF (x, y) =�
�

6

Z
x
0

0

d3zI⇢(x, z)
�
F 2(z, y)�

1

4
⇢2(z, y)

�
+

�

3

Z
y
0

0

d3zIF (x, z)F (z, y)⇢(z, y)

+
�

6

⇣
F 2(x, y)�

1

4
⇢2(x, y)

⌘
. (3.20)

3.2 Numerical implementation

The non-linear integro-di↵erential equations of motion may be evaluated numerically, in

terms of a discrete set of degrees of freedom. This may be done either through discretising

the system on a space-time lattice at the level of the action, or through discretising mo-

mentum space and time at the level of the equations of motion. We will here opt for the

lattice implementation.

6We note in passing that not iterating the IF,⇢, but simply inserting the local (no time integration) part

of the expression into (3.17, 3.18) reduces the evolution to NLO in a coupling expansion [17, 31].

– 8 –

Statistical propagator:                          ~ n
Spectral propagator:                           ~ 1

F = h{�,�}i
⇢ = h[�,�]i

Berges, Cox: 2001
Aarts, Berges: 2002, …
Aarts, Berges, Serreau, Baier, Ahrensmeier: 2002
AT, Smit, Arrizabalaga: 2004 + 2005.
AT: 2008



• Numerically hard (time and memory intensive).
• Scalars and fermions ok (doublers, …).
• Gauge fields much harder.
• Hard to go beyond NLO.
• Renormalisation works, but hard.
• Resummed perturbative. Unlikely to capture truly non-

perturbative properties (defects, instantons, confinement?)

Thermal mass in expanding (scalar field) plasma
Gelis, Hauksson: 2024

Thermalisation after preheating
Ungersbäck, AT: 2024

Fermion thermalisation
Berges, Borsanyi, Serreau: 2003
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Thermal mass in expanding (scalar field) plasma
Gelis, Hauksson: 2024

Thermalisation after preheating
Ungersbäck, AT: 2024

Fermion thermalisation
Berges, Borsanyi, Serreau: 2003

• Numerically hard (time and memory intensive).
• Scalars and fermions ok (doublers, …).
• Gauge fields much harder.
• Hard to go beyond NLO.
• Renormalisation works, but hard.
• Resummed perturbative. Unlikely to capture truly non-

perturbative properties (defects, instantons, confinement?) • Use, when classical-statistical 
approximation fails. 
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Solution #3: Going complex



Contour deformation (Thimbles)
Z

D� eiS[�]�(t2)�(t1)h�+
0 |⇢|�

�
0 i

h�+
0 |⇢|�

�
0 i

Initial condition

To get full nonperturbative quantum results, must 
evaluate entire path integral.

Bad convergence when field variables are on the (real axis)^N. 
Find a better “axis”? Not complex time path; complex-valued 
field variables, allowed to probe hypersurface in in C^N.
• Continuous deformation from R^N (Generalised Thimble).
• Directly on “optimal” manifolds (Lefschetz Thimbles).
• Maths tells you the result is the same. Is the numerical

effort sufficiently reduced?



Contour deformation (Thimbles)
Z

D� eiS[�]�(t2)�(t1)h�+
0 |⇢|�
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Initial condition

To get full nonperturbative quantum results, must 
evaluate entire path integral.

Bad convergence when field variables are on the (real axis)^N. 
Find a better “axis”? Not complex time path; complex-valued 
field variables, allowed to probe hypersurface in in C^N.
• Continuous deformation from R^N (Generalised Thimble).
• Directly on “optimal” manifolds (Lefschetz Thimbles).
• Maths tells you the result is the same. Is the numerical

effort sufficiently reduced?

Correlators in QM. Also 1+1d 
field theory from same group.
Alexandru, Basar, Bedaque, Vartak, 

Warrington: 2016

Quantum mechanical tunneling
AT, Mou, Saffin: 2019

Sofar, only very short physical times are accessible.  
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Z
D� eiS[�]�(t2)�(t1)h�+

0 |⇢|�
�
0 i

h�+
0 |⇢|�

�
0 i

Initial condition

To get full nonperturbative quantum results, must 
evaluate entire path integral.

Complex Langevin

For a Euclidean action/positive definite distribution, sample 
using MC or Langevin/stochastic quantization.

For a complex action à do the same! It might just work. 
Not complex time path; complex-valued field variables, each 
allowed to probe all of the complex plane.

Issues of convergence and stability can be tempered through 
field redefinitions/kernels, dynamical stabilization. Much 
harder for real-time evolution than for chemical potential. 



Z
D� eiS[�]�(t2)�(t1)h�+
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Initial condition

For a Euclidean action/positive definite distribution, sample 
using MC or Langevin/stochastic quantization.

For a complex action à do the same! It might just work. 
Not complex time path; complex-valued field variables, each 
allowed to probe all of the complex plane.

Issues of convergence and stability can be tempered through 
field redefinitions/kernels, dynamical stabilization. Much 
harder for real-time evolution than for chemical potential. 

To get full nonperturbative quantum results, must 
evaluate entire path integral.

Sofar, only very short physical times are accessible.  

1+1 d, non-equal-time correlator. ML, kernels, …
Sexty, Alvestad, Rothkopf: 2024  (talk Tuesday)

Complex Langevin



Conclusion and outlook

• Lattice quantum field theory methods are used to study many out-of-equilibrium phenomena in 
cosmology, early Universe phase transition physics and heavy ion collisions. 

• Initial value problems in real time suffer from a severe sign problem, and computing the path
integral is mostly replaced by: 
• Classical-statistical simulations (when that applies), sometimes with quantum fermions.
• UV-improved, perturbatively embellished evolution equations (when they work).

• Focus has been to reach large volumes with fine resolution, large physical times, expanding boxes, 
many different models, several mass scales. Much phenomenological exploration, but also numbers
(or exponents, space/time scales, spectra) matched to experiment and observation.

• For truly non-perturbative, but also truly quantum, real-time evolution, we await that Complex
Langevin and/or Thimble simulations extend to long times and large volumes in 3+1D.
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