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Many (most?) applications of lattice field theory concern the
computation of correlators in equilibrium, allowing Monte
Carlo sampling of a Euclidean action field theory.

Very successful, Lattice 1992-2024....

Out-of-equilibrium systems are initial value problems, where
some initial state evolves in real time towards a (usually
unknown) final (equilibrium) state.

Lattice discretization of such systems is used in many contexts:
* Baryogenesis.

e (initial stages of) Heavy-lon collision dynamics.

* Phase transition dynamics.

e Gravitational wave production.

* Inflation and preheating.

* Cosmic strings/monopoles/domain walls/textures...
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Many (most?) applications of lattice field theory concern the This talk:
computation of correlators in equilibrium, allowing Monte * Some background for those unfamiliar with
Carlo sampling of a Euclidean action field theory. the topic.

* The problem(s).
Very successful, Lattice 1992-2024.... * Solution #1: Classical-statistical.

e Solution #2: Schwinger-Dyson egs.
Out-of-equilibrium systems are initial value problems, where e Solution #3: Going complex (briefly).
some initial state evolves in real time towards a (usually * Examples, not complete review.

unknown) final (equilibrium) state.

Lattice discretization of such systems is used in many contexts:
* Baryogenesis.

e (initial stages of) Heavy-lon collision dynamics. Not this talk:

* Phase transition dynamics. * Al, Quantum computing, ...

* Gravitational wave production. e Equilibrium quantities used for real-time
e |nflation and preheating. using linear response.

e Cosmic strings/monopoles/domain walls/textures... * Real-time correlators in equilibrium.

. ..  Comprehensive review of state-of-the-art.
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Contributions scattered over the parallel and poster sessions:

* Eduardo Garnacho-Velasco: In/out of eq. CME (finite T QCD).
* Francesco d’Angelo: QCD sphaleron rate (finite T QCD).

* Michael Mandl, Paul Hotzy, Gert Aarts, Diaa Eddin Habibi: Complex Langevin (algo. & Al).
* Joshua Swaim: Vacuum decay (algo. & Al).

* Scott Lawrence: Real time dynamics (algo. & Al).

* Alexander Rothkopf: Classical dynamics and symmetries (theor.).
* David Weir: Bubble nucleation (theor.).

* Michael Hansen: Complex Langevin Stabilization (finite density).
* Riikka Seppa: SU(8) bubble nucleation (poster).

* Denes Sexty: Real time Scalar fields (appl. outside PP).

Go check out live or poster or uploaded slides!
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Introduction: Path integrals



In Quantum (Field) Theory, we often want to compute
observables inside the real-time transition amplitude
from one state to another:

(2, taln|L; t1) = (2]e 2=t 1)

H is the quantum Hamiltonian operator, expressed in
terms of the field operators ¢(x, ).

This may be rewritten as a path integral:
2,6:/0@)[1,t) = [ Dse¥io()

Where S is the Lagrangian, expressed in terms of the
fields, living on a time-contour in the complex plane,
called R : [-00, 00].

The integral is over “paths”, field configurations in 3+1
dimensions. May want to “wick rotate” to complex
time, Euclidean action.
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In Quantum (Field) Theory, we often want to compute
observables inside the real-time transition amplitude
from one state to another:

(2, taln|L; t1) = (2]e 2=t 1)

H is the quantum Hamiltonian operator, expressed in
terms of the field operators ¢(x, ).

This may be rewritten as a path integral:
2,6:/0@)[1,t) = [ Dse¥io()

Where S is the Lagrangian, expressed in terms of the
fields, living on a time-contour in the complex plane,
called R : [-00, 00].

The integral is over “paths”, field configurations in 3+1

dimensions. May want to “wick rotate” to complex
time, Euclidean action.

In Thermal Quantum (Field) Theory, we often want to
compute expectation values of the form:

(0(9)) = Tept)O(d) = 3 (nle™H/TO()|n)

n
H is the quantum Hamiltonian operator, expressed in
terms of the field operators ¢(x, ).

This may be rewritten as a path integral:

(O(3)) = / DéeS=W0(g)

Where S is the Lagrangian, expressed in terms of the
fields, living on a time-contour in the complex plane

[0,-i/T].

The integral is over “paths”, field configurations in 3+1
dimensions, periodic in “time”.

D

University of
Stavanger
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from one state to another:

(2, taln|L; t1) = (2]e 2=t 1)

H is the quantum Hamiltonian operator, expressed in
terms of the field operators ¢(x, ).

This may be rewritten as a path integral:
2,6:/0@)[1,t) = [ Dse¥io()

Where S is the Lagrangian, expressed in terms of the
fields, living on a time-contour in the complex plane,
called R : [-00, 00].

The integral is over “paths”, field configurations in 3+1

dimensions. May want to “wick rotate” to complex
time, Euclidean action.

In Thermal Quantum (Field) Theory, we often want to
compute expectation values of the form:

(0(9)) = Tept)O(d) = 3 (nle™H/TO()|n)

n
H is the quantum Hamiltonian operator, expressed in
terms of the field operators ¢(z, t).

This may be rewritten as a path integral:

(O(3)) = / DéeS=W0(g)

Where S is the Lagrangian, expressed in terms of the
fields, living on a time-contour in the complex plane

[0,-i/T].

The integral is over “paths”, field configurations in 3+1
dimensions, periodic in “time”.

This may be computed order by order in perturbation theory. But not

all physics is captured by such an expansion = put in on the lattice,
compute it non-perturbatively.
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Sometimes, one wants to actually calculate
correlators with a physical time-separation:

In equilibrium:

(B(t2)o(t1)) = Trp(t)d(t2)d(t1) =
Zm‘e—ﬁ/TG—z‘ﬁI(to—tg)qge—z‘ﬁ[(tg—tl)qge—iﬁ[(tl—to) In)

This may be rewritten as a path integral

/DCb el p(t2) g (t1)

Where S is the Lagrangian, expressed in terms of
the fields, living on a time-contour in the complex
plane, called C, the Keldysh (or Schwinger-
Keldysh) contour:

Schwinger—Keldysh contour

Imt
|dentify C, /
start and '1

. < 5 .
endpoint \7 -
-i

C
- Re t
t
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The initial density matrix need not be the g
equilibrium one. It could be any initial state.

Sometimes, one wants to actually calculate
correlators with a physical time-separation:
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In equilibrium: Out of equilibrium:

($(t2)p(t1)) = Tep(t)g(t2)p(t1) = (B(t2)b(t1)) = Trp(t)d(t2) dlt1) =
Zwe—ﬁ/TG—iﬁI(to—tz)qg e—iﬁ(tg—tl)qg e—iﬁ(tl—to) ) Z pn<n‘€—iﬁ(to—t2)qg e—iﬁ(tg—tl)qg e—iﬁ(tl—to) In)

This may be rewritten as a path integral

/DCb el p(t2) g (t1)

Where S is the Lagrangian, expressed in terms of
the fields, living on a time-contour in the complex

This may be rewritten as a path integral

/ D S (t,)b(t1) (01 ol )

Where S is the Lagrangian, expressed in terms of
the fields, living on a time-contour in the complex

plane, called C, the Keldysh (or Schwinger-
Keldysh) contour:

Schwinger—Keldysh contour
Imt
|dentify c, '/ C
start and </ ) ket
g 0 C t
endpoint \7 -
-1

plane, also called C, the Keldysh (or Schwinger-
Keldysh) contour:

Imt
<¢§|p|¢a>\\i o/
Initial condition C )

C
> Re t
t

Schwinger—Keldysh contour
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The problem



But now we are in trouble!
e
Pl¢] = Dg s

Is not a probability distribution, that one may
sample using importance sampling.

Alternatively, interpreting the complex phase as
part of the observable,

_,(e0(9))

Converges very slowly, and the denominator is
close to zero.

The “Sign” problem. “Exponentially hard”.
Give up? Go home?

The sign problem arises whenever iS is complex, and when
one cannot simply Wick rotate time t -> it and make it real:

e Equilibrium with local observables: ok as is!
 Vacuum-to-vacuum transitions: ok after Wick rotation!

* Equilibrium with time-separated observables: Not ok!
e Qut-of-equilibrium processes: Not ok!
 When the system has a chemical potential

* iSisimaginary, 1 /Vis real: Not ok!

* Wick-rotate -> vice versa: Not ok!

Complex
t-plane

v
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Cannot solve the sign problem by
Complexifying the time variable.
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Solution #1: Classical-Statistical approximation



Solution #1: Classical-Statistical approximation q
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/ D S (t5) (81 ) |0l

Schwinger—Keldysh contour
<¢§|p|¢6>\\l0 +.
Initial condition .

Simple statement:

* Consider only initial states p that are easily sample-able (like a
Gaussian state). Or MC the initial state.

* Never mind sampling the inside path integral. Replace by the
saddle point for each initial configuration, the classical path.

Re t




Solution #1: Classical-Statistical approximation g
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iS[¢] i Py Slightly less simple statement:
/Dqﬁ < ¢(t2)¢(t1)<¢0 |’0|¢0 ) * “Double” field variables by labelling with t and +/-
Im ¢ Schwinger—Keldysh contour branCI:]. i .

i " / * Redefine into Keldysh basis

(@q pl¢o >\\i = =3 6T +07), =gt -4
Initial condition t
A 4 “ * Neglect all instances of (#7)”2 in the action.
* Integrate out ¢? - classical eom for ¢Cl.

Simple statement:

* Consider only initial states p that are easily sample-able (like a
Gaussian state). Or MC the initial state.

* Never mind sampling the inside path integral. Replace by the
saddle point for each initial configuration, the classical path.

cl-cl: F Good approximation when
F2 > p2
Spectral propagator: P = <[€Z5, ¢]>“ 1

T Aarts, Smit: 1997,
Statistical propagator: F' = ({¢,¢})~n AT, Saffin, Mou, Millington: 2021




Standard lattice discretization allows for solving numerically:

 Draw initial conditions.

Bubbles colliding in a first order transition.

Cutting, Hindmarsh, Weir: 2018

t/R, = 0.785

5.242 x 10
I3‘739 x 102 _
~
5

u
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e Solve equations of motion.
 Compute observables as ensemble averages. 2236102 =
 Make sure that volume size and resolution is sufficient. . I
. 5 = 15
* Numerically easy (allows for large lattices). ;
e Scalar fields, gauge fields, strawberry fields, ... 1" &
0.56
(0.0
¥ ~ b _% =l
103 "s: Qt= 130 2’ 2
L\ =1 Qt= 700 weeee — Too/3 — fluid velocity |%2°
2 [N _ Qt=1400 =wwwee | i1,
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0.1 ' Egaag‘éﬁgg;gé 0.12]
102 . . . . . . Y
0 0.5 1 1.5 2 25 3 3.5

K

Energy density spectra at
preheating after inflation.
Figueroa, Torrenti: 2017

Occupation numbers during turbulent
cascade equilibration. Berges, Boguslavski,
Schlichting, Venugopalan: 2014

advancing bubble wall.
Saffin, Mou, AT: 2020

Energy density distribution near an




Bubbles colliding in a first order transition.
Cutting, Hindmarsh, Weir: 2018 N
Standard lattice discretization allows for solving numerically: T =075 U

5.242 x 10?
e Draw initial conditions. I Ugit\;e\a,;sritgye?f
. . 3.739 x 102 _
e Solve equations of motion. ]

 Compute observables as ensemble averages. 223010 =
 Make sure that volume size and resolution is sufficient. . I
y . = 15
 Numerically easy (allows for large lattices). ;
e Scalar fields, gauge fields, strawberry fields, ... 1" &
—0.56
Only reliable when occupation numbers are large, F is large!
Does not give the correct equilibrium state, nor late-time behaviour.
Excellent for intermediate-time out-of-equilibrium dynamics!
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Energy density spectra at Occupation numbers during turbulent Energy density distribution near an
preheating after inflation. cascade equilibration. Berges, Boguslavski, advancing bubble wall.
Figueroa, Torrenti: 2017 Schlichting, Venugopalan: 2014 Saffin, Mou, AT: 2020




What about fermions; they do not acquire large occupation numbers? 5

Fermions tend to occur as bi-linears in the action =2 linear
evolution equations. Allows for mode expansion: B

¢(ZE7 t) = Z Usak,sfk,s(xv t)
k,s

* Solve for fermions in the classical scalar/gauge field background.
* Include back-reaction through time-dependent expectation values
of fermion bilinears in classical scalar and gauge field equations of

University of
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—— NLO, N; = 512
—— NLO, Ny = 768

—— NNLO, N; =512
—— NNLO, N; =768

50 100 150 200 250 300

Time t-m

motion.

1.5

Aarts, Smit: 1998.
Hindmarsh, Borsanyi: 2009
AT, Berges, Schlichting, Mou, Saffin, ...
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Schwinger pair production
Spitz, Berges: 2018

Cold Baryogenesis, Nw, Ncs, Nf
AT, Saffin: 2011




Solution #2: Schwinger-Dyson equations (2Pl)




The incorrect equilibration may be ameliorated through

a better treatment of the UV.

Scale separation + effective IR dynamics with cutoff.

Scale separation + Hard loops in UV.
Stochastic noise/kinetic theory.

My personal favourite: Real-time Schwinger-Dyson
equation based on truncation of 2P| effective action.

Provides self-consistent evolution equations for
full correlation functions.

Beyond LO, involves memory integrals to the
initial time.

Conveniently discretized through a lattice action
(or ad hoc).

Conserves energy, Goldstone theorem, Ward
identities, renormalisability.

Thermalises to quantum equilibrium.

Reliable also for small occupation numbers.
Systematically improvable.
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((9752 — 02 +M2(a:))F(x,y d>23P(x, 2)F(z,y)

e
+/0ydz0/dzZsz 2,y),
;]

((9,52 —8£—|—M2(a€)) (z,y) d223P (x, 2)p(2, 7).

Statistical propagator: F' = ({¢, ¢}) ~n
Spectral propagator: P = (|®, ®]) ~1

7 N
/ \
i Batal | el PSR
\ /I
N
\_,/

Berges, Cox: 2001

Aarts, Berges: 2002, ...

Aarts, Berges, Serreau, Baier, Ahrensmeier: 2002
AT, Smit, Arrizabalaga: 2004 + 2005.

AT: 2008
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* Numerically hard (time and memory intensive).
e Scalars and fermions ok (doublers, ...). University of
7 Stavanger
e Gauge fields much harder.
e Hard to go beyond NLO.
* Renormalisation works, but hard.
 Resummed perturbative. Unlikely to capture truly non-
perturbative properties (defects, instantons, confinement?)
- - _ 3 S —
t0=10 o Q=160 ) Q=320 P i *‘ ] ..}.z'l 0.3 initial fermiog‘gistributions p=0.16, A -
. . ® ut=50 | .: ‘og ¥ : 0.25 A {ng B p=0'48’é -
2.0 0.12 1 0.12 ® «1t=100 | o P : 1% \
0.10 1 010«*""/”/ EQ e 5t: 00 | ! ',_’:."F ~ 021 | — B
Ol.s« / > | a 015
1S4 0.08 4 0.08 1 + ;;
= 1.0{" 0.06 1 0.06 =, W 01
' ' | — Mp.0 E| A
0.04 0.04 M(0, p) 0.05 n, Y
] 0.02 4 0.02 1 Or
*%0 05 1o %00 05 2o %0 05 1.0 -0.05 j' - : * : . e
’ p./Q, pAQ p./Q, pAQ p./Q, pAQ 0 5 10 15 20 125 30 50 100 500
t[m ]

Thermal mass in expanding (scalar field) plasma
Gelis, Hauksson: 2024

Thermalisation after preheating
Ungersback, AT: 2024

Fermion thermalisation

Berges, Borsanyi, Serreau: 2003




Numerically hard (time and memory intensive). U

[
e Scalars and fermions ok (doublers, ...). University of
7 Stavanger
e Gauge fields much harder.
e Hard to go beyond NLO.
* Renormalisation works, but hard.
 Resummed perturbative. Unlikely to capture truly non-
perturbative properties (defects, instantons, confinement?) « Use, when classical-statistical
approximation fails.
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' ' ® «t=50 | .: ‘.‘: ¥ o 0.25 A {ng B p=0'48’é S
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Thermal mass in expanding (scalar field) plasma Thermalisation after preheating Fermion thermalisation

Gelis, Hauksson: 2024 Ungersback, AT: 2024 Berges, Borsanyi, Serreau: 2003
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Solution #3: Going complex



Contour deformation (Thimbles) g
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/ D S p(t2)(t1) (b2 |0l )

Schwinger—Keldysh contour
_+_ Lo
el S X
b R a— Ret
Initial condition C t

To get full nonperturbative quantum results, must
evaluate entire path integral.

Bad convergence when field variables are on the (real axis)*N.

Find a better “axis”? Not complex time path; complex-valued

field variables, allowed to probe hypersurface in in CAN.

e Continuous deformation from RN (Generalised Thimble).

* Directly on “optimal” manifolds (Lefschetz Thimbles).

* Maths tells you the result is the same. Is the numerical
effort sufficiently reduced?



Contour deformation (Thimbles)

/ D S p(t2)(t1) (b2 |0l )

(65 |l dg )——

Schwinger—Keldysh contour

Ret

Initial condition

To get full nonperturbative quantum results, must

evaluate entire path integral.

Bad convergence when field variables are on the (real axis)*N.
Find a better “axis”? Not complex time path; complex-valued
field variables, allowed to probe hypersurface in in CAN.

e Continuous deformation from RN (Generalised Thimble).
manifolds (Lefschetz Thimbles).

* Maths tells you the result is the same. Is the numerical

e Directly on “optima

effort sufficiently reduced?
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Correlators in QM. Also 1+1d
field theory from same group.
Alexandru, Basar, Bedaque, Vartak,

Warrington: 2016

0.3 -~ Re[Gr x(t,1)]
0.2 kN — Im[Gr(t.1)] o ¢
= 041 LN
< 00 :
£ A
<01
&
-0.2
&
-03 g
0.0 0.5 10 15 2.0
t-t
150,
S RelG, ;;(.L)]
10 ™
— Im[G, (4]
o0s ¥ /‘/r
£ 00 $
© 05 h ¥
-10 +
-15 —
0.5 10 15 2.0

Quantum mechanical tunneling

AT, Mou, Saffin: 2019

Sofar, only very short physical times are accessible.

time=4.000000

i [— Real

— Imag [q

— Prob

2.0t

— Schrédinger
¥ % Classical-statistical
f 1 Inidensity+thimble
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Complex Langevin q
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/ Do S8 (1)t ) (6 |olon )

Schwinger—Keldysh contour
— .
i S X
S Y — Ret
Initial condition C t

To get full nonperturbative quantum results, must
evaluate entire path integral.

For a Euclidean action/positive definite distribution, sample
using MC or Langevin/stochastic quantization.

For a complex action = do the same! It might just work.
Not complex time path; complex-valued field variables, each
allowed to probe all of the complex plane.

Issues of convergence and stability can be tempered through
field redefinitions/kernels, dynamical stabilization. Much
harder for real-time evolution than for chemical potential.



/ D S p(t5)(t1) (2 |0l )

(b0 |pldo )——

Schwinger—Keldysh contour

Initial condition

Ret

To get full nonperturbative quantum results, must
evaluate entire path integral.

For a Euclidean action/positive definite distribution, sample

using MC or Langevin/stochastic quantization.

For a complex action = do the same! It might just work.
Not complex time path; complex-valued field variables, each

allowed to probe all of the complex plane.

Issues of convergence and stability can be tempered through
field redefinitions/kernels, dynamical stabilization. Much
harder for real-time evolution than for chemical potential.

Complex Langevin
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Sofar, only very short physical times are accessible.

1+1 d, non-equal-time correlator. ML, kernels, ...
Sexty, Alvestad, Rothkopf: 2024 (talk Tuesday)

C(t)

1.0

05}

0.0

-0.5¢1

K=1
Thimble




Conclusion and outlook Q
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Lattice quantum field theory methods are used to study many out-of-equilibrium phenomena in
cosmology, early Universe phase transition physics and heavy ion collisions.

Initial value problems in real time suffer from a severe sign problem, and computing the path
integral is mostly replaced by:
» Classical-statistical simulations (when that applies), sometimes with quantum fermions.
* UV-improved, perturbatively embellished evolution equations (when they work).

Focus has been to reach large volumes with fine resolution, large physical times, expanding boxes,
many different models, several mass scales. Much phenomenological exploration, but also numbers
(or exponents, space/time scales, spectra) matched to experiment and observation.

For truly non-perturbative, but also truly quantum, real-time evolution, we await that Complex
Langevin and/or Thimble simulations extend to long times and large volumes in 3+1D.
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Lattice quantum field theory methods are used to study many out-of-equilibrium phenomena in
cosmology, early Universe phase transition physics and heavy ion collisions.

Initial value problems in real time suffer from a severe sign problem, and computing the path
integral is mostly replaced by:
» Classical-statistical simulations (when that applies), sometimes with quantum fermions.
* UV-improved, perturbatively embellished evolution equations (when they work).

Focus has been to reach large volumes with fine resolution, large physical times, expanding boxes,
many different models, several mass scales. Much phenomenological exploration, but also numbers
(or exponents, space/time scales, spectra) matched to experiment and observation.

For truly non-perturbative, but also truly quantum, real-time evolution, we await that Complex
Langevin and/or Thimble simulations extend to long times and large volumes in 3+1D.

Thank you for your attention!




