The **3-pion K-matrix** at **NLO** in **ChPT:** all isospin channels Lattice 2024, Liverpool

Mattias Sjö, CPT Marseille

Baeza-Ballesteros, Bijnens, Husek, Romero-López, Sharpe & **MS** "*The isospin-3 three-particle K-matrix at NLO in ChPT*" *JHEP*, 2303.13206[hep-ph]

Baeza-Ballesteros, Bijnens, Husek, Romero-López, Sharpe & **MS** "*The three-pion K-matrix at NLO in ChPT*"

JHEP, 2401.14293[hep-ph]

The people

Hans Bijnens, Lund U.

Stephen Sharpe, U. of Washington

Tomáš Husek, Birmingham U.

Fernando Romero-López, $\mbox{MIT} \rightarrow \mbox{Bern U}.$

Mattias Sjö, CPT Marseille

Jorge Baeza-Ballesteros, U. de València

The K-matrix

Finite-volume spectrum

Lattice QCD (Fernando's talk, etc.)

Amplitude

ChPT or similar Bijnens & Husek (2021) Bijnens, Husek & **MS** (2022)

The tension that was

* Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe, "Three-body interactions from the finite-volume QCD spectrum"

Phys.Rev.D, 2021.06144[hep-lat]

In the previous episode...

* Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe,

"Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, "ππ scattering"

Phys.Rev.D, 2021.06144[hep-lat] Nucl.Phys.B, hep-ph/0103088

In the previous episode...

- * Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe,
 - "Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, "ππ scattering"

[†] Preliminary (see Fernando's talk yesterday)

Phys.Rev.D, 2021.06144[hep-lat] Nucl.Phys.B, hep-ph/0103088

- **b** Gain experience needed for $\pi\pi K$, etc.
- There will eventually be lattice data
- 🕨 Fun to do

The K-matrix

How to get it

Guiding properties of \mathcal{D}

- ► Exactly cancels divergences → df
- All internal lines on-shell

s-channel one-particle exchange

Only present at isospin 1

No subtraction needed since pole is sub-threshold

Subtracting poles

t-channel one-particle exchange

Note: G necessarily contains a cutoff function

Subtracting cuts

Bull's head cut

Bull's head subtraction

The bull's head

The bull's head integral is **awful**:

- ► Triangle loop ⇒ complicated, pole-ridden integrand
- ▶ On-shell \Rightarrow no loop momentum shift
- ► Non-analytic ⇒ no Wick rotation, etc.

Different approaches

Divide & conquer

Simple part with poles + complicated part (numerics-friendly)

Subtract & conquer

Cancel divergences against \mathcal{M}_3 before evaluating

Brute-force numerics

Because Tomáš is a Mathematica wizard

Semi-analytic

Threshold-expand, then apply deep magic

Threshold expansion

Expansion parameters

$$\Delta \propto \mathcal{P}^2 - (3M_\pi)^2$$

 $\Delta_i^{(\prime)} \propto (\mathcal{P} - \mathcal{p}_i^{(\prime)})^2 - (2M_\pi)^2$
 $\tilde{t}_{ij} \propto (\mathcal{p}_i - \mathcal{p}_j')^2$

(**system** above-threshold-ness)

(**pair** above-threshold-ness)

(spectator above-threshold-ness)

Compound parameters

$$\Delta_{\mathsf{A}} = \sum (\Delta_i^2 + \Delta_i'^2) - \Delta^2 \qquad \Delta_{\mathsf{B}} = \sum \tilde{t}_{ij}^2 - \Delta^2$$

Maximum isospin threshold expansion

$$\mathcal{K}_{df,3}^{[\ell=3]} = \mathcal{K}_0 + \mathcal{K}_1 \Delta + \mathcal{K}_2 \Delta^2 + \mathcal{K}_A \Delta_A + \mathcal{K}_B \Delta_B + \mathcal{O}(\Delta^3)$$

Non-maximal isospin

/ = 3	Sin	glet
<i>l</i> = 2	Dou	ıblet
<i>l</i> = 1	Singlet	Doublet
/ = 0	Antisymme	etric singlet

Minimum isospin threshold expansion

$$\mathcal{K}_{df,3}^{[l=0]} = \mathcal{K}_0^{AS} \sum \epsilon_{ijk} \epsilon_{lmn} \tilde{t}_{il} \tilde{t}_{jm} + \mathcal{O}(\Delta^3)$$

Semi-analytic evaluation

J.Functional Analysis, 1401.7045[math.FA]

Maximum isospin, again

- * Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe,
 - "Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, "ππ scattering"

[†] Preliminary (see Fernando's talk yesterday)

Phys.Rev.D, 2021.06144 [hep-lat] Nucl.Phys.B, hep-ph/0103088

Subleading order

- * Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe,
 - "Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, " $\pi\pi$ scattering"

† Preliminary (see Fernando's talk yesterday)

Phys.Rev.D, 2021.06144[hep-lat] Nucl.Phys.B, hep-ph/0103088

Sub-subleading order

- * Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe,
 - "Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, "ππ scattering"

[†] Preliminary (see Fernando's talk yesterday)

Phys.Rev.D, 2021.06144[hep-lat] Nucl.Phys.B, hep-ph/0103088

All maximum-isospin components

Isospin 2

Isospin 0

Awaiting more lattice results...

The threshold expansion works

...better than it has to

- Large LO-NLO difference is troubling...
- ...but LO is very constrained
 - ⇒ **qualitative** difference expected
- Adding NNLO: extremely difficult:
 - Two-loop 6-point amplitude
 - \blacksquare Integral relation between \mathcal{M}_{3} and $\mathcal{K}_{df,3}$

All three-pion channels covered

- Main tension resolved (where lattice data are available)
- Next steps: see Steve's talk yesterday
- Pion-kaon case is underway on the amplitude side