CLQCD ensembles

$$S_{g}(g_{0}) = \frac{1}{N_{c}} \operatorname{Re} \sum_{x,\mu < \nu} \operatorname{Tr} \left[1 - \frac{10}{(g_{0}^{2}u_{0}^{4})} \left(\mathscr{P}_{\mu,\nu}^{U}(x) + \frac{1}{20u_{0}^{2}} \mathscr{R}_{\mu,\nu}^{U}(x) \right) \right]$$
$$S_{q}(m) = \sum_{x,\mu=1,\dots,4,\eta=\pm} \bar{\psi}(x) \sum \frac{1 + \eta\gamma_{\mu}}{2} V_{\eta\mu}(x)\psi(x + \eta\hat{\mu}a) + \sum_{x} \psi(x) \left[-(4 + ma)\delta_{y,x} + \frac{1}{v_{0}^{3}}\sigma^{2} \right]$$

- lacksquaregauge;
- Tadpole imp fermion;
- Tadpole improvement lacksquare
- \bullet 0.001~% level, as the hadron and quark masses.

Basic information

 $\sigma^{\mu\nu}g_0F^V_{\mu\nu} \mid \psi(x),$

Tadpole improved Symanzik

Clover

requires fine-tuning of the tadpole factors u_0 and u_I ;

We tune those factors to the mistuning effect can be $\mathcal{O}(100)$ enhanced in the

\mathbf{Symbol}	\hat{eta}	$a~({\rm fm})$	$\tilde{L}^3 imes \tilde{T}$	m_{π} (MeV)	m_η
C24P34	6.200	0.10530(18)	$24^3 \times 64$	340.5(1.7)	74
C24P29			$24^3 \times 72$	292.7(1.2)	65
C32P29			$32^3 \times 64$	292.4(1.1)	65
C32P23			$32^{3} \times 64$	228.0(1.2)	64
C48P23			$48^3 \times 96$	225.6(0.9)	64
C48P14			$48^3 \times 96$	135.5(1.6)	70
E28P35	6.308	0.08877(30)	$28^3 \times 64$	352.1(1.2)	72
F32P30	6.410	0.07750(18)	$32^3 \times 96$	303.2(1.3)	67
F48P30			$48^3 \times 96$	303.4(0.9)	67
F32P21			$32^3 \times 64$	210.9(2.2)	66
F48P21			$48^3 \times 96$	207.2(1.1)	66
G36P29	6.498	0.06826(27)	$36^{3} \times 108$	295.1(1.2)	69
H48P32	6.720	0.05187(26)	$48^3 \times 144$	317.2(0.9)	69
		. ,		. ,	

Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, 2310.00814

H.Y. Du, B.L. Hu, et. al., CLQCD, In preparation

CLQCD ensembles

ITP/CAS (~2TFlops, ~7PB)

SCNC (IMP/CAS & SCNU, ~3TFlops, ~5PB)

Data generation, storage and code

- Generated and stored at ITP/CAS, SCNC and etc.;
- Acceptable topological charge autocorrelation at the smallest lattice spacing;
- Based on Chroma+QUDA and will be moved to pyQUDA+QUDA.

CLQCD ensembles

Data sharing

- Shared among the Chinese institutions, to support the Lattice QCD calculation in China;
- Website for the metadata is in progress.
- International collaboration based on CLQCD ensembles is welcome;
- International sharing of the CLQCD ensembles is still under discussion.

H.Y. Du, B.L. Hu, et. al., CLQCD, In preparation

