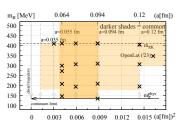

OPENLAT ENSEMBLE GENERATION ILDG Data Session - Lattice 2024


August 2nd, 2024 | Giovanni Pederiva |

Ensemble Overview

- Gauge field ensembles with 2+1 fermion flavors with lattice spacings a = 0.055, 0.064, 0.077, 0.094, 0.12 fm
- Pion masses at m_{π} =412, \simeq 300, \simeq 200, \simeq 135 MeV.
- Volumes with $m_{\pi}L \gtrsim 4$ and $L \gtrsim 3$ fm.
- Fixed mass matrix Tr[M] =const. tuned at the SU(3)_F-point with m_{π,K} = 412 MeV.
- Reweighting factors close to unity (so far $\delta \lesssim 5\%$).
- Produced with resources in France, Finland, Germany, Italy and the USA.

Data Management Plan

Management plan:

- Redundancy through mirrors (TPCC, NERSC)
- Long term storage planned, currently tape option used
- All metadata preserved on disk and in online repository

Metadata:

- Detailed provenance policy (runner, machine, code-version, time-stamps)
- Auxilliary measurements include:
 - Run observables: plaquettes, δH , iteration counts, acceptance
 - Wilson flow observables: energy density (two operators), topological charge
 - Hadronic observables: pp, ap correlators
 - Other observables: reweighting factors, lowest eigenvalues, spectral range
- Data integrity:
 - all configurations contain the plaquette in header
 - list of checksums for all configurations provided (using md5sum)

Data accessibility:

- All configurations and metadata are made openly available at time of publication.
- We are strongly in favor of uploading our ensembles to the ILDG as it aligns with the core values of our collaboration

Total Ensemble Data

- **Stage 1.:** SU(3) flavor symmetric point, $M_{\pi} = M_{K} = 412 \text{MeV}$ \rightarrow 4 ensembles, 35 TB
- Stage 2.:
 - ightarrow 4 ensembles at $M_{\pi}=$ 300MeV, 23.6 TB
 - ightarrow 4 ensembles at $M_{\pi}=$ 200MeV, 14.7 TB
- Stage 3.: physical point $M_{\pi}=135 \mathrm{MeV}$
 - ightarrow 2 ensembles ready for production, 2 still tuning, 45.5 TB

We have a total of 120 TB so far, but we are now in production for stage 2 and some of stage 3, so in the next year we already expect a factor 2-3 in storage requirements

OpenLat Experience with ILDG

- GP and A. Rago are involved in the ILDG 2.0 efforts, so a bit easier
- Need for better documentation and tooling for markup and uploading, potential barrier if too complex
- Gauge field format and packing needs to be improved. We use openQCD format, need for a good converter for ILDG format

