Beautiful and Charming Baryon Workshop, IPPP, 2024

Status of and Prospects for Baryon Form Factors from Lattice QCD

Stefan Meinel

- Beautiful and charming baryon form factors from lattice QCD: methods and challenges
- $2 \quad \Xi_c \to \Xi \ell^+ \nu$

Lattice QCD

Lattice gauge theory allows us to nonperturbatively compute imaginary-time ($t = -i\tau$, $\tau \in \mathbb{R}$), a.k.a. Euclidean, QCD correlation functions in a finite volume:

$$\langle O_n(\mathbf{x}_n, \tau_n) ... O_1(\mathbf{x}_1, \tau_1) \rangle = \frac{1}{Z} \int \mathcal{D}[\psi, \overline{\psi}, U] O_n(\mathbf{x}_n, \tau_n) ... O_1(\mathbf{x}_1, \tau_1) e^{-S_E[\psi, \overline{\psi}, U]}$$

The parameters are the bare quark masses and the bare gauge coupling. Taking the gauge coupling to 0 is equivalent to taking the lattice spacing to 0. One also needs to keep L large enough.

Lattice actions

Gluon actions: discretization errors start at order a^2 or higher for all of them; generally under good control.

Commonly used fermion actions suitable for **light quarks** ($ma \ll 1$):

- Staggered (e.g. asqtad, HISQ): has a chiral symmetry that prevents additive mass renormalization and yields automatic order-a improvement, but has the fermion doubling problem (e.g. multiple tastes of pions with different masses, requiring root of fermion determinant) and complicated symmetry properties. Poorly suited for baryons.
- *Wilson/clover:* no fermion doubling, but no chiral symmetry. Order-*a* improvement requires tuning.
- *Twisted-mass:* no fermion doubling, automatic order-*a* improvement, but breaks flavor and parity symmetry.
- Overlap or domain-wall (DWF): no fermion doubling, continuum-like symmetries, automatic order-a improvement, most expensive.

In the continuum limit, full QCD with the correct continuum symmetries is obtained with all of these actions.

Lattice actions

Common treatments of heavy quarks on the lattice:

- Lattice HQET: Discretization of continuum HQET with $\mathbf{v} = 0$. Continuum limit is possible when treating $1/m_Q$ corrections as insertions in correlation functions.
- Lattice NRQCD: Discretization of continuum NRQCD. Computations must be done with $am_Q > 1$.
- Fermilab method/RHQ(Columbia/Tsukuba) action/Oktay-Kronfeld action: Wilson-like action with one or more coefficients tuned to remove heavy-quark discretization errors. Can be used for any am_Q .
- Use the same action as for the light quarks: requires very fine lattices to keep $m_Qa < 1$ and typically an extrapolation in $1/m_Q$ to reach the physical bottom mass. Simplifies renormalization of currents.

Hadron interpolating fields

Examples:

$$O_B(\mathbf{x},\tau) = \bar{b}^a_{\alpha}(\mathbf{x},\tau)(\gamma_5)_{\alpha\beta} d^a_{\beta}(\mathbf{x},\tau)$$

$$O_{\Lambda_b}(\mathbf{x},\tau)_{\gamma} = \epsilon^{abc} (C\gamma_5)_{\alpha\beta} d^a_{\alpha}(\mathbf{x},\tau) u^b_{\beta}(\mathbf{x},\tau) b^c_{\gamma}(\mathbf{x},\tau) - (d\leftrightarrow u)$$

Often, "smearing" is used for the quark fields. Example: Gaussian smearing

$$q_{ ext{smeared}} = \left(1 + rac{\sigma^2}{4N}
abla^2
ight)^N q$$

Correlation functions from gauge configurations

The path integral over the quark fields is done symbolically,

$$\frac{1}{Z}\int \mathcal{D}[\psi,\overline{\psi},\boldsymbol{U}] O_n...O_1 e^{-S_E[\psi,\overline{\psi},\boldsymbol{U}]} = \frac{1}{Z}\int \mathcal{D}[\boldsymbol{U}] f_n[\boldsymbol{U}] \left(\prod_F \det D^F[\boldsymbol{U}]\right) e^{-S_E^{gluon}[\boldsymbol{U}]}$$

Any correlation functions can be computed as averages over previously generated random gauge-link configurations U with probability density

$$ho[U] = rac{1}{Z} \left(\prod_F \det D^F[U]
ight) e^{-S^{
m gluon}_E[U]},$$

where $D^{F}[U]$ is the lattice Dirac operator for quark flavor F for a given U. Typically, F = u, d, s or F = u, d, s, c are included here.

For example, the two-point function with ${\it O}_1={\it O}_2=ar b\gamma_5 d$ is given by

$$C_{2}(\mathbf{p},\tau) = \lim_{N_{\rm cfg} \to \infty} \frac{1}{N_{\rm cfg}} \sum_{n=1}^{N_{\rm cfg}} a^{3} \sum_{\mathbf{x}} e^{-i\mathbf{p}\cdot(\mathbf{x}-\mathbf{x}_{\rm src})} \operatorname{Tr} \left[\gamma_{5} \left(D^{d} \right)^{-1}_{(\mathbf{x},\tau_{\rm src}+\tau),(\mathbf{x}_{\rm src},\tau_{\rm src})} \left[U_{n} \right] \gamma_{5} \left(D^{b} \right)^{-1}_{(\mathbf{x}_{\rm src},\tau_{\rm src}),(\mathbf{x},\tau_{\rm src}+\tau)} \left[U_{n} \right] \right]$$

Because we have $N_{cfg} < \infty$ [typically $O(10^2) - O(10^3)$], there is a statistical uncertainty. This uncertainty can also be reduced by averaging over multiple ($\tau_{src}, \mathbf{x}_{src}$).

Meson and baryon two-point functions

Showing $E_{\text{eff}}(\tau) = a^{-1} \ln[C(\tau)/C(\tau+a)]$. From a (5.5 fm)³ × (11 fm) lattice with spacing $a \approx 0.114$ fm and approximately physical quark masses:

Three-point function

$$C_{3}(\mathbf{p}',\mathbf{p},\tau_{\rm snk},\tau_{\rm J},\tau_{\rm src}) = \sum_{\mathbf{z}} \sum_{\mathbf{y}} e^{-i\mathbf{p}'\cdot(\mathbf{z}-\mathbf{y})} e^{-i\mathbf{p}\cdot(\mathbf{y}-\mathbf{x})} \langle O'(\mathbf{z},\tau_{\rm snk}) J(\mathbf{y},\tau_{\rm J}) O^{\dagger}(\mathbf{x},\tau_{\rm src}) \rangle$$

- O: interpolating field for initial-state hadron
- O': interpolating field for final-state hadron
- J: the quark current from the weak effective Hamiltonian

Inserting complete sets of states shows that

$$C_{3}(\mathbf{p}',\mathbf{p},\tau_{\mathrm{snk}},\tau_{J},\tau_{\mathrm{src}}) = \sum_{m} \sum_{n} e^{-E_{m}(\tau_{\mathrm{snk}}-\tau_{J})} e^{-E_{n}(\tau_{J}-\tau_{\mathrm{src}})} \times \langle \Omega|O'(0)|m(\mathbf{p}')\rangle \langle m(\mathbf{p}')|J(0)|n(\mathbf{p})\rangle \langle n(\mathbf{p})|O(0)|\Omega\rangle$$

For large $\tau_{snk} - \tau_J$ and $\tau_J - \tau_{src}$, the lowest-energy states dominate (excited states decay exponentially faster).

The energies and unwanted overlap factors factors can be obtained from two-point functions:

$$C_{2}(\mathbf{p}, \tau_{\text{snk}}, \tau_{\text{src}}) = \sum_{\mathbf{z}} e^{-i\mathbf{p}\cdot(\mathbf{z}-\mathbf{x})} \langle O(\mathbf{z}, \tau_{\text{snk}}) O^{\dagger}(\mathbf{x}, \tau_{\text{src}}) \rangle$$
$$= \sum_{n} e^{-E_{n}(\tau_{\text{snk}}-\tau_{\text{src}})} |\langle n(\mathbf{p})| O^{\dagger}(0)|\Omega \rangle|^{2}$$

$$\begin{aligned} C_2'(\mathbf{p}',\tau_{\rm snk},\tau_{\rm src}) &= \sum_{\mathbf{z}} e^{-i\mathbf{p}'\cdot(\mathbf{z}-\mathbf{x})} \langle O'(\mathbf{z},\tau_{\rm snk}) \ O'^{\dagger}(\mathbf{x},\tau_{\rm src}) \rangle \\ &= \sum_{m} e^{-E_m(\tau_{\rm snk}-\tau_{\rm src})} |\langle m(\mathbf{p}')| O'^{\dagger}(0)|\Omega \rangle|^2 \end{aligned}$$

One can construct appropriate ratios containing three-point and two-point functions such that for large $\tau_{snk} - \tau_J$ and $\tau_J - \tau_{src}$ one obtains the desired

 $\langle H'(\mathbf{p}')|J(0)|H(\mathbf{p})\rangle$

Here are example lattice results for the form factor $g_{\perp}(\Lambda_c \to \Lambda)$, computed for various lattice spacings and quark masses, at $\mathbf{p} = 0$ and various $\mathbf{p}' \neq 0$ (quantized due to periodic boundary conditions).

The final step is to fit the dependence on q^2 , on the quark masses, and on the lattice spacing, and to estimate systematic uncertainties.

Baryon angular momentum on the lattice

Momentum $\left[\frac{2\pi}{L}\right]$	Irrep	Dimension	J^P content
(0,0,0)	G_1^g	2	$1/2^+$, $7/2^+$,
	H ^g	4	$3/2^+$, $5/2^+$,
	G_2^g	2	5/2+, 7/2+,
	G_1^u	2	$1/2^-$, $7/2^-$,
	H^{u}	4	$3/2^{-}$, $5/2^{-}$,
	G_2^u	2	5/2 ⁻ , 7/2 ⁻ ,
(0,0,1)	G_1	2	$1/2^\pm$, $3/2^\pm$,
	G_2	2	$3/2^{\pm}$, $5/2^{\pm}$,
(0,1,1)	(2) <i>G</i>	2	$1/2^{\pm}$, $3/2^{\pm}$,
(1, 1, 1)	G	2	$1/2^\pm$, $3/2^\pm$,
	F_1	1	$3/2^{\pm}$, $5/2^{\pm}$,
	F_2	1	$3/2^{\pm}, 5/2^{\pm},$

Not a problem for the ground-state $\frac{1}{2}^+$ baryons (always the lowest energy level). For $\frac{1}{2}^-$ and $\frac{3}{2}^-$ baryons, it is easiest to use zero momentum only.

q^2 coverage for bottom-to-light decays

Example: $\Lambda_b \rightarrow \Lambda^*(1520)$ [in narrow-width approximation]:

Multi-hadron states and resonances

Discrete spectrum of finite-volume energy eigenstates affected by hadron-hadron interactions

Energy shifts related to infinite-volume scattering phase shifts through Lüscher quantization condition, and matrix elements related through Lellouch-Lüscher relation. Figure shows simple single-channel case.

Overview: b and c baryon semileptonic form factors from lattice QCD

Early lattice studies of $\Lambda_b \rightarrow \Lambda_c$ (quenched, focused on Isgur-Wise function):

- K. C. Boweler et al. (UKQCD Collaboration), hep-lat/9709028/PRD 1998
- S. Gottlieb and S. Tamhankar, hep-lat/0301022/Lattice 2002

Our calculations, using RBC/UKQCD gauge-field configurations, $N_f = 2 + 1$ domain-wall, RHQ for m_Q phys.

Tra	ansition	m_Q	<i>a</i> [fm]	m_{π} [MeV]	Reference
۸	$_{ m b} \rightarrow \Lambda$	∞	0.08, 0.11	230-360	WD, DL, SM, MW, 1212.4827/PRD 2013
۸	$b \rightarrow p$	∞	0.08, 0.11	230-360	WD, DL, SM, MW, 1306.0446/PRD 2013
۸	$b \rightarrow p$	phys.	0.08, 0.11	230-360	WD, CL, SM, 1503.01421/PRD 2015
۸,	$_{ m b} ightarrow \Lambda_c$	phys.	0.08, 0.11	230-360	WD, CL, SM, 1503.01421/PRD 2015;
					AD, SK, SM, AR, 1702.02243/JHEP 2017
۸,	$_{ m b} \rightarrow \Lambda$	phys.	0.08, 0.11	230-360	WD, SM, 1602.01399/PRD 2016
۸	$h \to \Lambda^*(1520)$	phys.	0.08, 0.11	300-430	SM, GR, 2009.09313/PRD 2021; 2107.13140/PRD 2022
۸,	$_{\rm b} \rightarrow \Lambda_c^*(2595)$	phys.	0.08, 0.11	300-430	SM, GR, 2103.08775/PRD 2021; 2107.13140/PRD 2022
۸	$h \rightarrow \Lambda_c^*$ (2625)	phys.	0.08, 0.11	300-430	SM, GR, 2103.08775/PRD 2021; 2107.13140/PRD 2022
٨	$\rightarrow \Lambda$	phys.	0.08, 0.11	140-360	SM, 1611.09696/PRL 2017
٨	$r \rightarrow n$	phys.	0.08, 0.11	230-360	SM, 1712.05783/PRD 2018
٨	$_{z} \rightarrow \Lambda^{*}(1520)$	phys.	0.08, 0.11	300–430	SM, GR, 2107.13140/PRD 2022; 2107.13084/PRD 2022

+work in progress: $\Xi_c \rightarrow \Xi$: CF, SM, 2309.08107; Next-gen $\Lambda_b \rightarrow p, \Lambda, \Lambda_c$: SM, 2309.01821

Recent lattice calculations by other collaborations:

 $\Xi_c \rightarrow \Xi$: $N_f = 2 + 1$ clover, $a \approx 0.08, 0.11$ fm, $m_\pi \approx 290, 300$ MeV, Q.-A. Zhang, J. Hua, F. Huang, R. Li, Y. Li, C.-D. Lu, P. Sun, W. Sun, W. Wang, Y.-B. Yang, 2103.07064/CPC 2022

 $\Lambda_c \rightarrow \Lambda$: $N_f = 2$ clover, $a \approx 0.16$ fm, $m_\pi \approx 550$ MeV, H. Bahtiyar, 2107.13909/Turk.J.Phys.2021

- Beautiful and charming baryon form factors from lattice QCD: methods and challenges
- 2 $\Xi_c \rightarrow \Xi \ell^+ \nu$

Recent experimental progress

$$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = \begin{cases} (0.730 \pm 0.021 \pm 0.033) \,\%, & \text{Belle, } 2103.06496/\text{PRL } 2021 \\ (1.38 \pm 0.14 \pm 0.22) \,\%, & \text{ALICE, } 2105.05187/\text{PRL } 2021 \\ \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.80 \pm 0.50 \pm 0.14) \,\%, & \text{Belle, } 1811.09738/\text{PRL } 2019 \end{cases}$$

 $\Rightarrow \quad \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = \left\{ \begin{array}{l} (1.31 \pm 0.04 \pm 0.07 \pm 0.38) \,\%, & \text{Belle} \\ (2.48 \pm 0.25 \pm 0.40 \pm 0.72) \,\%, & \text{ALICE \& Belle} \end{array} \right.$

 $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.43 \pm 0.27)$ %, PDG 2024

 $\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.05 \pm 0.20) \,\%, \ \ \mathsf{PDG} \ 2024$

Flavor SU(3) symmetry predicts a much higher $\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) \approx \frac{3}{2} \frac{\tau_{\Xi_c^0}}{\tau_{\Lambda_c}} \mathcal{B}(\Lambda_c \to \Lambda e^+ \nu_e) \approx 4\%$ using $\mathcal{B}(\Lambda_c \to \Lambda e^+ \nu_e)$ from BESIII [2207.14149/PRL 2022]

Standard-Model predictions

Reference	Method	$\mathcal{B}(\Xi_c^0 o \Xi^- e^+ u_e)$ [%]
Zhang <i>et al.</i> , 2103.07064/CPC 2022	Lattice QCD	$2.38 \pm 0.30 \pm 0.33$
Zhao <i>et al.</i> , 2103.09436/PRD 2023	QCD sum rules	1.83 ± 0.45
He <i>et al.</i> , 2110.04179/PLB 2021	Flavor SU(3)	4.10 ± 0.46
Geng et al., 2012.04147/PRD 2021	Light-front quark model	3.49 ± 0.95
Faustov and Galkin, 1905.08652/EPJC 2019	Relativistic quark model*	2.38
Geng et al., 1901.05610/PLB 2019	Flavor SU(3)*	3.0 ± 0.3
Zhao, 1803.02292/CPC 2018	Light-front quark model*	1.35
Geng et al., 1801.03276/PRD 2018	Flavor SU(3)*	4.87 ± 1.74
Geng <i>et al.</i> , 1709.00808/JHEP 2017	Flavor SU(3)*	3.0 ± 0.5
Liu and Huang, 1102.4245/JPG 2010	QCD sum rules*	2.4

 * using pre-LHCb $au_{\Xi^0_c} = (112\pm13)$ fs

PDG 2024 including LHCb: $\tau_{\Xi_c^0} = (150.4 \pm 2.8)$ fs

Zhang et al. lattice calculation [2103.07064/CPC 2022]

TABLE I. Parameters of the 2+1 flavor clover fermion ensembles used in this calculation. The π/η_s masses and the lattice spacings are given in units of MeV, and fm, respectively.

	$\beta = \frac{10}{g^2}$	$L^3 \times T$	а	$c_{\rm sw}$	κ_l	m_{π}	κ_s	m_{η_s}
s108	6.20	$24^3 \times 72$	0.108	1.161	0.1343	290	0.1330	640
s080	6.41	$32^3 \times 96$	0.080	1.141	0.1326	300	0.1318	650

Valence charm also implemented using clover, tuned using J/ψ rest mass

Our lattice calculation [Callum Farrell and SM, in preparation]

(2+1)-flavor domain-wall RBC/UKQCD ensembles

Label	$N_s^3 imes N_t imes N_5$	<i>a</i> [fm]	$am_{u,d}$	$am_s^{({ m sea})}$	$am_s^{(val)}$	m_{π} [MeV]
C01	$24^3\times 64\times 16$	pprox 0.111	0.01	0.04	0.0323	pprox 420
C005	$24^3 imes 64 imes 16$	pprox 0.111	0.005	0.04	0.0323	pprox 340
F004	$32^3 imes 64 imes 16$	pprox 0.083	0.004	0.03	0.0248	pprox 300
F1M	$48^3\times96\times12$	pprox 0.073	0.002144	0.02144	0.02217	pprox 230

Valence charm using three-parameter heavy-quark action (tuned using D_s dispersion relation and hyperfine splitting [SM, 2309.01821])

^{*}Here we denote Euclidean time by t

 $R_f(t) \rightarrow f$ for large t

We are now using a generalized version of the Akaike information criterion to average over fits with different t_{min} [W. Jay and E. Neil, 2008.01069/PRD 2021]

We predict $\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) \approx 3.7\%$, which is about 3.5 times higher than PDG and close to the expectation from SU(3) flavor symmetry.

Lattice prospects for other processes

In progress [Callum Farrell and SM]:

•
$$\equiv_b \rightarrow \equiv \ell^+ \ell^-$$

How interesting are the following?

- $\Xi_b \to \Xi_c \ \ell^- \bar{\nu}_\ell$
- $\Omega_b o \Omega_c \ \ell^- \bar{
 u}_\ell$
- $\Omega_c \to \Omega \, \ell^+ \nu_\ell$
- $\Omega_b \to \Omega \, \ell^+ \ell^-$

The following could in principle be studied for the lowest partial wave(s) and low enough $m_{\rho K}, m_{\Sigma \pi}$, but it would be very challenging and very expensive. Needs coupled-channel fits.

- $\Lambda_c \to \{ p \, K, \, \Sigma \, \pi \} \ell^+ \nu_\ell$
- $\Lambda_b \to \{p \, K, \, \Sigma \, \pi\} \ell^+ \ell^-$

[J. Bulava et al., 2307.10413/PRL 2024] ($m_\pi pprox$ 200 MeV)