Beauty baryons in ATLAS

Maria Smizanska on behalf of the ATLAS collaboration

Lancaster University

Durham 2024, 9-11. Sept 2024

Outline

- Production polarisation of Λ_b^0 and Parity-violating asymmetry parameter and the helicity amplitudes in $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ Phys. Rev. D 89, 092009, May 2014
- Measurement of Λ⁰_b lifetime PhysRevD.87.032002, 2013
- J/ ψ p resonances in the $\Lambda_b^0 \rightarrow J/\psi K^-$ ATLAS-CONF-2019-48
- Summary and outlook

Parity-violating asymmetry parameter, Polarisation and helicity amplitudes in $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ Phys. Rev. D 89, 092009, May 2014

Physics motivation

- Production polarisation: in the symmetric p-p collisions hyperons are produced with spin perpendicular to the production plane. A Polarisation means an asymmetry between probabilities of spin oriented up versus down. Λ_b^0 production polarisation in ATLAS been measured using the decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$. In the central p-p collisions covered by ATLAS detector this polarisation is expected to be larger than in forward oriented LHCb. So measuring it in ATLAS is a synergy between LHC experiments.
- Another property of hyperons is a parity violation, some of them exhibit in their decays. For example,
 Λ → pπ has an asymmetry parameter of over 60%.
- $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ Decay Probability depends on production polarisation P and 4 helicity amplitudes $a_+ \equiv A(1/2, 0), a_- \equiv A(-1/2, 0), b_+ \equiv A(-1/2, 1)$ and $b_+ \equiv A(1/2, -1)$, where 1/2 and 1 are spin projections of Λ and J/ψ . The parity violating parameter is defined as: $\alpha_b \equiv |a_+|^2 |a_-|^2 + |b_+|^2 |b_-|^2$

Parity-violating asymmetry parameter, Polarisation and helicity amplitudes in $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$, cont 1 Phys. Rev. D 89, 092009, May 2014

• $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ Decay Probability contain 20 terms, shown in figure, left. To extract all physics parameters in the PDF, the 5 angles are used, shown in Fig right.

i	f_{1i}	f_{2i}	F_{i}
0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	Р	$\cos heta$
2	$a_+a_+^* - aa^* - b_+b_+^* + bb^*$	α_{Λ}	$\cos \theta_1$
3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P\alpha_{\Lambda}$	$\cos\theta\cos\theta_1$
4	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$
5	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	Р	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta$
6	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta_1$
7	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-rac{1}{2}b_{+}b_{+}^{*}-rac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta\cos\theta_1$
8	$-3Re(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta\sin\theta_1\sin\theta_2\cos\phi_1$
9	$3Im(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta \sin\theta_1 \sin^2\theta_2 \sin\phi_1$
10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta \sin\theta_1 \sin^2\theta_2 \cos(\phi_1 + 2\phi_2)$
11	$\frac{3}{2}Im(b_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta \sin\theta_1 \sin^2\theta_2 \sin(\phi_1 + 2\phi_2)$
12	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\phi_2$
13	$\frac{3}{\sqrt{2}}Im(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\phi_2$
14	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$
15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta \sin\theta_1 \sin\theta_2 \cos\theta_2 \sin(\phi_1 + \phi_2)$
16	$\frac{3}{\sqrt{2}}Re(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	Р	$\sin\theta\sin\theta_2\cos\theta_2\cos\phi_2$
17	$-\frac{3}{\sqrt{2}}Im(a_{b_{+}}^{*}-b_{a_{+}}^{*})$	Р	$\sin\theta\sin\theta_2\cos\theta_2\sin\phi_2$
18	$\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\phi_1 + \phi_2)$
19	$-\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1 \sin\theta_2 \cos\theta_2 \sin(\phi_1 + \phi_2)$

Parity-violating asymmetry parameter and helicity amplitudes in $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$, cont 1 Phys. Rev. D 89, 092009, May 2014

- Supposing production polarisation is P=0, leaves only 5 out of 20 terms of PDF.
- The Parity-violating asymmetry parameter α_b and 4 helicity amplitudes were measured for Λ_b^0 , for anti Λ_b^0 and for the combination of both, combining Λ_b^0 and anti- Λ_b^0 samples, under the assumption of CP conservation.
- both Λ_b^0 anti Λ_b^0
- $\alpha_b = 0.28 \pm 0.16 \pm \pm 0.06$
- $\begin{aligned} |a_{+}| &= 0.17^{+0.12}_{-0.17}(\text{stat}) \pm 0.09(\text{syst}) \\ |a_{-}| &= 0.59^{+0.06}_{-0.07}(\text{stat}) \pm 0.03(\text{syst}) \\ |b_{+}| &= 0.79^{+0.04}_{-0.06}(\text{stat}) \pm 0.02(\text{syst}) \\ |b_{-}| &= 0.08^{+0.12}_{-0.06}(\text{stat}) \pm 0.06(\text{syst}) \end{aligned}$

- Λ_b^0 • $\alpha_b = 0.24 \pm 0.22 \pm 0.28$
- $|a_{+}| = 0.26^{+0.11}_{-0.26}(\text{stat})$ $|a_{-}| = 0.60^{+0.08}_{-0.09}(\text{stat})$ $|b_{+}| = 0.75^{+0.06}_{-0.07}(\text{stat})$ $|b_{-}| = 0.14^{+0.10}_{-0.14}(\text{stat})$

- anti Λ_b^0
- $\alpha_b = 0.33 \pm 0.17 \pm 0.17$
- $|a_{+}| = 0.008^{+0.227}_{-0.008}(\text{stat})$ $|a_{-}| = 0.58^{+0.07}_{-0.08}(\text{stat})$ $|b_{+}| = 0.81^{+0.05}_{-0.05}(\text{stat})$ $|b_{-}| = 0.004^{+0.168}_{-0.004}(\text{stat})$
- If parity is conserved, one should get $|a_+| = |a_-|$ and $|b_+| = |b_-|$. The different values of $|a_+| / |a_-|$ and $|b_+| / |b_-|$ shows the parity conservation is broken in the $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ decay.
- Large amplitudes $|a_-|$ and $|b_+|$ mean the negative-helicity states for Λ are preferred. The Λ and $J\psi$ from Λ_b^0 decay are highly polarized.
- The parameters from Λ⁰_b and anti-Λ⁰_b are consistent with each other, showing no indication of the CP violation. In this case, the results of the combination of Λ⁰_b and anti-Λ⁰_b is justified, which are more

Parity-violating asymmetry parameter and the helicity amplitudes in $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$, cont Phys. Rev. D 89, 092009, May 2014

Comparison of asymmetry parameter with others.

- ATLAS α_b = 0.28 ± 0.16(stat) ± 0.06(syst)
- Comparison with LHCb:
 - Adding in quadrature stat. and syst. uncertainties , ATLAS α_b is consistent with early LHCb measurement 0.05 \pm 0.17(stat) \pm 0.07(syst) [Phys.Lett.B724,27(2013)] ,
 - while it is in tensions at level of 1.6 σ with new LHCb measurement: JHEP 06 (2020), in which the parity-violating parameter α_b was found to be consistent with zero, with a 68% credibility interval from -0.048 to 0.005.
- Theory models predict α_b values:
 - pQCD[C.-H.Chou,etal, Phys.Rev.D65, 074030(2002)] (α_b in the range -0.17 to -0.14
 - HQET[Z.Ajaltouni,etal, Phys.Lett.B614,165(2005)] ($\alpha_b = \pm 0.78$)

Polarisation and Parity-violating parameter in $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ Phys. Rev. D 89, 092009, May 2014

• Fit results when allowing Polarisation parameter non-zero for Λ_b^0 , anti Λ_b^0 and combined.

Paramet	er	Λ_b only	$ar{\Lambda}_b$ only	Λ_b and $ar{\Lambda}_b$	
α_b		$0.17^{+0.21}_{-0.20}$	$0.32^{+0.17}_{-0.16}$	$0.29^{+0.15}_{-0.15}$	
Ρ	-($0.26_{-0.23}^{+0.23}$	$-0.11\substack{+0.16\\-0.16}$	$-0.13_{-0.13}^{+0.13}$	
$ a_+ $	($0.20^{+0.11}_{-0.16}$	$0.05^{+0.18}_{-0.05}$	$0.15^{+0.04}_{-0.15}$	
$ a_{-} $	($0.61_{-0.07}^{+0.06}$	$0.58_{-0.08}^{+0.07}$	$0.59^{+0.06}_{-0.06}$	
$ b_+ $	($0.74_{-0.07}^{+0.07}$	$0.81^{+0.05}_{-0.06}$	$0.79^{+0.04}_{-0.05}$	
$ b_{-} $	($0.20^{+0.13}_{-0.20}$	$0.012_{-0.012}^{+0.157}$	$0.07^{+0.13}_{-0.07}$	

Table 13: Fit results when allowing polarization parameter free.

- Within precision of measurement, the Polarisations of Λ_b^0 , anti Λ_b^0 and combined are identical with zero.
- Under conditions of Polarisation parameter free, the asymmetry parameters of Λ⁰_b, antiΛ⁰_b and combined are consistent with the measurement if Polarisation supposed to be 0.
- Total Run2/Run3 statistics to improve precision of these important parameters of Λ_b^0 baryon.

- Based on 4.9 fb⁻¹ of p-p collisions in ATLAS.
- Simultaneous un-binned maximum likelihood fit applied to mass and proper-decay time to Λ⁰_b → J/ψΛ⁰ candidates.

TABLE II. Summary of the systematic uncertainties of the lifetime measurement, $\sigma_{\tau}^{\text{syst}}$, and the mass measurement, σ_{m}^{syst} , for Λ_{h}^{0} .

Systematic uncertainty	$\sigma_{\tau}^{\rm syst}$ (fs)	$\sigma_m^{\rm syst}$ (MeV)
Selection/reco. bias	12	0.9
Background fit models	9	0.2
B_{d}^{0} contamination	7	0.2
Residual misalignment	1	
Extra material	3	0.2
Tracking p_T scale		0.5
Total systematic error	17	1.1

• mass and lifetime result:

 $\tau_{\Lambda_b} = 1.449 \pm 0.036 ({\rm stat}) \pm 0.017 ({\rm syst})$ ps,

 $m_{\Lambda_b} = 5619.7 \pm 0.7 (\text{stat}) \pm 1.1 (\text{syst}) \text{ MeV}.$

 $\bullet~$ PDG: mass (5619.60 \pm 0.17) MeV , Lifetime (1.471 \pm 0.009) ps

• Ratio of Λ_b^0 and B_d^0 lifetimes:

 $R = \tau_{\Lambda_b} / \tau_{B_d} = 0.960 \pm 0.025 (\text{stat}) \pm 0.016 (\text{syst}).$

• PDG: 0.970±0.009

$\Lambda_b^0 \rightarrow J/\psi p K^-$ decay channel used to search for J/ψ p resonances with the Run1 data ATLAS-CONF-2019-48

- LHCb (PRL 115 (2015) 072001 W^C observed 2 structures, P_c(4380)⁺ and P_c(4450)⁺ in J/ψ p mass of Λ⁰_b → J/ψpK⁻. Later, PRL 117 (2016) 082003 W^C LHCb claimed one new narrow P_c(4312) state, and the previous Pc(4450) split into two close narrow peaks.
- Using Run1 data ATLAS use $\Lambda_b^0 \rightarrow J/\psi p K^-$ channel for this search.

Analyze signal process after the background decay parameters fixed at the step $1 \ensuremath{$

- Fit the $M(J/\psi pK)$ distribution in the "global scope"
 - $\blacktriangleright N(\Lambda_b^0 \to J/\psi p K^-) = 2270 \pm 300$
 - $\blacktriangleright N(B^0 \to J/\psi K^+\pi^-) \approx 10770$
 - $\blacktriangleright N(B_s^0 \to J/\psi K^+ K^-) \approx 2290$
 - $\blacktriangleright N(B^{0} \rightarrow J/\psi\pi^{+}\pi^{-}) \approx 1070$
 - $\blacktriangleright N(B_s^0 \to J/\psi \pi^+ \pi^-) \approx 1390$
- Further $\Lambda_b^0 \rightarrow J/\psi p K$ study is done in the SR (fit steps 3, 4)

∧⁰_b → J/ψpK yields in the SR:
 1010 ± 140 for right mass assignment
 160 ± 20 for wrong mass assignment

Fit	under	2	pentaquarks	hy	pothesis y	/ields

Parameter	Value	LHCb value [5]		
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	-		
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	-		
$N(P_{c1} + P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	-		
$\Delta \phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst}) \text{ rad}$	-		
$m(P_{c1})$	$4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$	$4380\pm8\pm29~{\rm MeV}$		
$\Gamma(P_{c1})$	$140^{+77}_{-50} (\text{stat})^{+41}_{-33} (\text{syst}) \text{ MeV}$	$205\pm18\pm86~{\rm MeV}$		
$m(P_{c2})$	$4449^{+20}_{-29} (\text{stat})^{+18}_{-10} (\text{syst}) \text{ MeV}$	$4449.8 \pm 1.7 \pm 2.5~{\rm MeV}$		
$\Gamma(P_{c2})$	$51^{+59}_{-48} \text{ (stat)}^{+14}_{-46} \text{ (syst) MeV}$	$39\pm5\pm19~{\rm MeV}$		

• χ^2 /n.d.f. = 31.7/39 (p = 55.7%)

- Fixing M and Γ of the two P_c to LHCb values yields $\chi^2/\text{n.d.f.} = 49.0/43 \ (p = 24.5\%)$
- The new narrow P_c states cannot be distinguished by ATLAS due to a worse mass resolution and low stats
- Check the hypothesis by fixing their parameters to the LHCb results
 - χ^2 /n.d.f. = 31.7/42

ATLAS search for J/ ψ p resonances in $\Lambda_b^0 \rightarrow J/\psi p K^-$ with the Run1 data

- Model with 2 penta-quarks yields 400 events $P_c(4282)^+$ and 150 $P_c(4449)^+$, with their parameters consistent with the LHCb results, arriving to $\chi^2/n.d.f. = 31.7/39$ (p = 55.5%)
- Fixing M and Γ of the two P_c to the LHCb values yields χ^2 /n.d.f. = 49.0/43 (p = 24.5%).
- The two new LHCb (2016) narrow P_c states cannot be distinguished by ATLAS due to a worse mass resolution and low stats
- Checking the hypothesis by fixing parameters to LHCb results gives χ^2 /n.d.f. = 31.7/42
- The no penta-quarks model fit to data was also performed. In this case the fit describes data poorly, but this hypothesis still cannot be excluded (p = 9.1 x 10⁻³).
- This ATLAS research continues with lager Run2 statistics allows more precise determination.

- Λ_b^0 research in ATLAS with RUN1 data covered wide spear of analysis:
- Λ_b^0 Production polarisation in 7 and 8 TeV p-p collisions
- Λ^0_b Parity violation measured in $\Lambda^0_b \to J/\psi \Lambda^0$ decay
- Λ^0_b lifetime in $\Lambda^0_b o J/\psi \Lambda^0$ and its ratio to Bd lifetime
- Less favourable Λ⁰_b → J/ψpK⁻ decay channel (due to hadrons in the final state) was successfully used to search for J/ψ p pentaquark resonances
- Improvements with Run2 statistics in all these projects vital.
- ATLAS opened to new ideas for analysis and searches in Beauty Baryons. New theory ideas very welcome !