Baryon Form Factors and Dispersive Bounds

Beautiful and Charming Baryon Workshop – Durham – 09/09/2024

Méril Reboud

Mostly based on:

- Gubernari, MR, van Dyk, Virto [2206.03797](https://arxiv.org/abs/2206.03797), [2305.06301](https://arxiv.org/abs/2305.06301)
- Amhis, Bordone, MR [2208.08937](https://arxiv.org/abs/2208.08937)

Laboratoire de Physique

Form factors in $b \rightarrow s \ell \ell$

Form factors in $b \rightarrow s \ell \ell$

$$
\mathcal{H}(b \to s\ell\ell) = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)
$$
\n
$$
\mathcal{O}_{\mathcal{A}} \left(\text{M} \right) \qquad \mathcal{O}_{\mathcal{A}} \left(\text{M} \right) \qquad \mathcal{O}_{\mathcal{A}} \left(\text{M} \right) \qquad \mathcal{O}_{\mathcal{A}} \left(\text{M} \right)
$$
\n
$$
A_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = N_{\lambda} \left\{ (C_9 + C_{10})\mathcal{F}_{\lambda}(q^2) + \frac{2m_bM_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}
$$
\n
$$
\mu(k,q) = i \int d^4x \, e^{iq \cdot x} \langle \bar{M}(k)|T\{\mathcal{J}_{\mu}^{\text{em}}(x), \mathcal{C}_i\mathcal{O}_i\} | \bar{B}(q+k) \rangle
$$
\nNon-local form-factors

 \rightarrow Main contributions: the "charm-loops" $\mathcal{O}_{2(1)}^c = (\bar{s}_L \gamma_\mu(T^a) c_L)(\bar{c}_L \gamma^\mu(T^a) b_L)$

Méril Reboud - 09/09/2024 3

 $\mathcal H$

Form factors in $b \rightarrow s \ell \ell$

Not in this talk...Non-local form-factors

 \rightarrow Main contributions: the "charm-loops" $\mathcal{O}_{2(1)}^c = (\bar{s}_L \gamma_\mu(T^a) c_L)(\bar{c}_L \gamma^\mu(T^a) b_L)$

Local form factors

- **2 main approaches**
	- Lattice QCD → most feasible at **large q²**
	- Light-cone sum rules → most feasible at **small q²**
- 2 possible LCSRs:
	- Light meson LCDA [recent works: Bharrucha, Straub, Zwicky '15; Khodjamirian, Rusov '17]
	- Heavy meson LCDA [recent works: Khodjamirian, Mannel, Pivovarov, Wang '10; Gubernari, Kokulu, van Dyk '18, recent review Khodjamirian, Melic, Wang, '23]
	- \rightarrow **Interpolation** in the physical range

 \rightarrow **Problem #1**: we don't know much about baryon LCDAs [Wang, Shen, *et al* '09, Wang, Shen, '15]

Form Factor Properties

$$
\mathcal{F}_\mu(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_\mu b_L | \bar{B}(q+k) \rangle
$$

Analytic properties of the form factors:

- Pole due to **bs bound state**
- **Branch cut** due to on-shell BM production

Form Factor Properties

 $\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_{\mu} b_L | \bar{B}(q+k) \rangle$

Form Factor Parametrization

Conformal mapping [Boyd, Grinstein, Lebed '97]

$$
z(s) \equiv \frac{\sqrt{s_+ - s} - \sqrt{s_+ - s_0}}{\sqrt{s_+ - s} + \sqrt{s_+ - s_0}}
$$

Simplified Series expansion [Bourrely, Caprini, Lellouch, '08; Bharucha, Feldmann, Wick '10]

$$
\mathcal{F}^{(T)}_\lambda(q^2) = \frac{1}{q^2-m_{B^*_s}^2}\sum_{k=0}^N \alpha_{\lambda,k} z^k
$$

N = 2 is usually enough to provide an **excellent description of the data** (p-values > 70%), but what about the *truncation error*?

II. Dispersive bound

Dispersive bounds

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

$$
\Pi_{\Gamma}^{\mu\nu}(q) \equiv i \int d^4x \, e^{iq \cdot x} \left\langle 0 \right| \mathcal{T} \left\{ J_{\Gamma}^{\mu}(x) J_{\Gamma}^{\dagger,\nu}(0) \right\} \left| 0 \right\rangle
$$

1) Partonic calculation

 $\overline{\mathsf{b}}$ Insertion of a + ಿಂಗ್ & n scalar, vector or tensor current $\frac{1}{5}$ + ...

Dispersive bounds

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

$$
\Pi_{\Gamma}^{\mu\nu}(q) \equiv i \int d^4x \, e^{iq \cdot x} \left\langle 0 \right| \mathcal{T} \left\{ J_{\Gamma}^{\mu}(x) J_{\Gamma}^{\dagger,\nu}(0) \right\} \left| 0 \right\rangle
$$

2) Relation to form factors

$$
\operatorname{Im} \Pi_{I}^{X}(q^{2}) = \frac{1}{2} \sum_{\Gamma} \int d\rho_{\Gamma} (2\pi)^{4} \delta^{4}(q - p_{\Gamma}) P_{I}^{\mu\nu} \underbrace{\langle 0 | j_{\mu}^{X} | \Gamma \rangle \langle \Gamma | j_{\nu}^{\dagger X} | 0 \rangle}_{\text{~} \sim \text{~|form factor } |^{2}}
$$

Sum over all the $\overline{s}b$ states: \overline{B}_s , $\overline{B}K$, $\overline{B}K^*$, $\overline{B}K\pi$, baryons...

Dispersive bounds

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

• Assuming global quark-hadron duality we have

$$
\chi_{\Gamma}^{(\lambda)}\big|_{\text{OPE}} = \chi_{\Gamma}^{(\lambda)}\big|_{\text{1pt}} + \chi_{\Gamma}^{(\lambda)}\big|_{\bar{B}K} + \chi_{\Gamma}^{(\lambda)}\big|_{\bar{B}K^*} + \chi_{\Gamma}^{(\lambda)}\big|_{\bar{B}_s\phi} + \dots
$$
\nknown terms

\nSum of positive quantities

Further contributions such as $B \to K\pi\pi$ or $\Lambda_{b} \rightarrow \Lambda^{(*)}.$

Any new terms *strengthens* the bound.

Simple case: $B \rightarrow K$

- The branch cut starts at the pair production threshold (neglecting $B_s\pi$)
- The monomial z^k are **orthogonal** on the unit circle

$$
\mathcal{F}^{B \to K} = \frac{1}{\mathcal{P}(z)\phi(z)} \sum_{k=0}^{N} \alpha_k z^k
$$

$$
\chi_{\Gamma}^{(\lambda)}|_{\bar{B}K} = \sum_{k=0}^{N} |\alpha_k|^2
$$

Less simple case, e.g. Λ_b → Λ

- The first branch cut (BK) starts **before** the pair production threshold
- Introduce orthonormal polynomials of the **arc of the unit circle**

$$
\mathcal{F}^{\Lambda_b \to \Lambda} = \frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{N} \alpha_k p_k(z)
$$

• (Or still expand in z and deal with a more complicated bound [Flynn, Jüttner, Tsang '23])

IV. Numerical results for Λb → Λ(1520)

Example with $\Lambda_b \rightarrow \Lambda(1520) \ell \ell$

- Inputs:
	- $-$ LQCD estimates at $q^2 = 16.3$ and 16.5 GeV² [Meinel, Rendon '21]
	- no LCSR available

→ use (loose) **SCET relations** [Descotes-Genon, M. Novoa-Brunet '19]

 $f_{\perp'}(0) = 0 \pm 0.2$, $g_{\perp'}(0) = 0 \pm 0.2$, $h_{\perp'}(0) = 0 \pm 0.2$, $\tilde{h}_{\perp}(0) = 0 \pm 0.2$, $f_{+}(0)/f_{+}(0) = 1 \pm 0.2$, $f_{+}(0)/g_{0}(0) = 1 \pm 0.2$, $g_{\perp}(0)/g_{+}(0) = 1 \pm 0.2$, $h_{+}(0)/h_{\perp}(0) = 1 \pm 0.2$, $f_{+}(0)/h_{+}(0) = 1 \pm 0.2$,

 $O(a_s/\pi, \Lambda_{\alpha cD}/m_b)$

14 form factors: **17 parameters (N = 1), 31 parameters (N = 2)**

21 LQCD inputs + 9 SCET relations: **30 constraints**

2 $*$ 14 – 7 endpoint relations at $q²$ _{max}

- $N = 1$ does not give a good fit (p value ~ 0)
- Use an **under-constrained fit** (N>1) and allows for saturation of the dispersive bound

 \rightarrow The uncertainties are truncation order independent: increasing the order does not change their size

• Same conclusions were found for $\Lambda_b \rightarrow \Lambda$ form factors [Blake, Meinel, Rahimi, van Dyk '22]

[Ahmis, MR, Bordone '22]

Phenomenology

- Uncertainties are large but **under control** and **systematically improvable**
- LHCb analysis confirmed the usual b \rightarrow s $\ell\ell$ tension at low q²

IV. Combined mesonic analysis

Local form factors fit

- With this framework we perform a **combined fit** of $B \to K$, $B \to K^*$ and $B_s \to \varphi$ LCSR and lattice QCD inputs:
	- $-$ B \rightarrow K:
		- \bullet [HPQCD '13 and '22; FNAL/MILC '17]
		- ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit
	- $-$ B \rightarrow K^{*}:
		- [Horgan, Liu, Meinel, Wingate '15]
		- [Gubernari, Kokulu, van Dyk '18] (B-meson LCSRs)
	- $B_{s} \rightarrow \varphi$:
		- [Horgan, Liu, Meinel, Wingate '15]
		- [Gubernari, van Dyk, Virto '20] (B-meson LCSRs)
- Adding $\Lambda_b \to \Lambda^{(*)}$ form factors is possible and desirable

Results for mesonic form-factors

Main conclusions:

- Fits are very good already at $N = 2$ (p-values > 77%)
- LCSR and LQCD combine nicely and still dominate the uncertainties
- Progresses in LQCD will gradually replace LCSR

Comparison plots for $B \rightarrow K$

- Normalizing the form factors to the $N = 3$ best fit point allows for a model comparison
- All the plots are available here: <https://doi.org/10.5281/zenodo.7919635>

V. Beyond narrow-width approximation

Caveat: finite width effects in $B \rightarrow K^*$

- Γ_{K^*} / M_{K^*} ~ 5% is not very small
- **Finite width effects** have to be accounted for in the LQCD and LCSR calculations
	- Universal 20% correction to the observables [Descotes-Genon, Khodjamirian, Virto '19]
	- Computable in LQCD [Leskovec '24]
- B → Kπμμ decays also have a large **S-wave component** [LHCb '16]
	- LCSR inputs for the S-wave are now available [Descotes-Genon, Khodjamirian, Virto, Vos '23]
- Need for a generic parametrization for $B \to K\pi$ **form factors** [Gustafson, Herren et al '23 (B \rightarrow D π)]

What about the baryons?

- Width effects are ~10% for the K^{*} (Γ_{K^*} / M_{K*} ~5%)
- Γ _{Λ(1520)} / M_{Λ(1520)} ~ 1%
	- width effects probably **safely negligible**
	- Pollution from the other resonances
- The other pK resonances:
	- can hardly be isolated experimentally
	- suffer from **large width effects i** [LHCb '23]

3-body form factors

• Generalized matrix elements

 $\langle p(k_1)K(k_2)|\mathcal{O}_i^{\mu}|\Lambda_b(q+k)\rangle = F_i(q^2,m_{pK}^2,\cos\theta_K)\mathcal{S}_{\mu}^i$

• Partial-wave expansion

$$
F_i(q^2, m_{pK}^2, \cos \theta_K) = \sum_{\ell=0}^{\infty} \sqrt{2\ell+1} F_i^{(\ell)}(q^2, m_{pK}^2) P_{\ell}(\cos \theta_K)
$$

3-body form-factors Legendre polynomials

known Lorentz structures

Analytic structure

Analytic structure

Dispersive bound

Dispersive bound

- How should we parametrize $F_i^{(e)}(q^2, m_{pk}^2)$?
	- Analyticity suggests a **double z-expansion**: simple but convergence is not ensured
	- Model + z-expansion:
		- Muskhelishvili-Omnès [Gustafson, Herren et al '23 (B \rightarrow D π)]
		- \bullet K matrix?
- **Problem #2**: Dispersive bounds *don't take a simple form*
- \bullet Factorization ansatz:

$$
F_i^{(\ell)}(q^2,m_{pK}^2) = \hat{F}_i^{(\ell)}(q^2,m_{pK}^2)\,\hat{g}(m_{pK}^2) = \left(\hat{F}_i^{(\ell)}(q^2) + \mathcal{O}\left(\frac{m_{pK}^2 - m_R^2}{m_B^2}\right)\right)\hat{g}(m_{pK}^2)
$$

Dispersive bound, finally

$$
F_i^{(\ell)}(q^2, m_{pK}^2) = \hat{F}_i^{(\ell)}(q^2, m_{pK}^2) \hat{g}(m_{pK}^2) = \left(\hat{F}_i^{(\ell)}(q^2) + \mathcal{O}\left(\frac{m_{pK}^2 - m_R^2}{m_B^2}\right)\right) \hat{g}(m_{pK}^2)
$$

• Dispersive bound now takes the form

$$
\hat{F}_i^{(\ell)}(q^2) = \frac{1}{\phi_i(z)\mathcal{B}_i(z)} \sum_{n>0} \alpha_n^{i\ell} p_n(z) \Big|_{z=z(q^2)} \qquad \Longrightarrow \qquad \sum_{n>0} |\alpha_n^{i\ell}|^2 < 1
$$
\nOuter function,

\nInner function = includes some **Blaschke factor, normalization**

\nnormalization

\nlogles

Méril Reboud - 09/09/2024 31

O
in

Conclusion

- I focused on $b \rightarrow s \ell \ell$ but all of this is also valid for all other quark transitions e.g. $\Lambda_c \rightarrow p\mu^+\mu^-$ [LHCb '24]
- Analyticity constraints are **great to reduce (extrapolation) uncertainties**…

… but their complexity increases exponentially (number of parameters, analytic continuations, …)

 \rightarrow Recent improvements in fitting/sampling techniques already allowed us to go one step further w.r.t to ~20 years ago

 \rightarrow More than ever, we are going to need a solid collaboration between experimentalists, theorists and (Bayesian ;)) statisticians

Back-up

Another example $Λ$ _b → Λ*θθ* [Blake, Meinel, *et al '23*]

- \cdot 10 form factors: **25 parameters (N = 2)**, **35 parameters (N = 3), 45 parameters (N = 4)**
- 25 constraints from LQCD [Detmold, Meinel, '16]
- Excellent p-values for $N > 2$
- Clear impact on the extrapolation:

With
bound:
$$
\frac{f_{\perp}^T(q^2=0)|_{N=2} = 0.190 \pm 0.043, f_{\perp}^T(q^2=0)|_{N=3} = 0.173 \pm 0.053, f_{\perp}^T(q^2=0)|_{N=4} = 0.166 \pm 0.049.
$$

Non-local contributions

Non-local form factors

 $\sqrt{2}$

$$
\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda} \ell \ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}
$$

$$
\mathcal{H}_{\mu}(k,q) = i \int d^4x \, e^{iq \cdot x} \langle \bar{M}(k) | T \{ \mathcal{J}_{\mu}^{\text{em}}(x), \mathcal{C}_i \mathcal{O}_i \} | \bar{B}(q+k) \rangle
$$

- Problematic because **they can mimic a BSM signal!**
	- $-\mathcal{H}_{\lambda}$ can be interpreted as a shift to C₂ and C₇
	- This shift is lepton-flavour universal (as now seen in the data)
- Notably **harder to estimate**, no lattice computation so far
- Dominated by O_1^c and O_2^c : "charm loop" [Khodjamirian, Mannel, Wang, '12]
- **Different parametrizations** are suggested

q² parametrization

● **Simple q2 expansion** [Jäger, Camalich '12; Ciuchini et al. '15]

$$
\mathcal{H}_{\lambda}(q^{2}) = \mathcal{H}_{\lambda}^{\text{QCDF}}(q^{2}) + h_{\lambda}(0) + \frac{q^{2}}{m_{B}^{2}}h_{\lambda}'(0) + \dots
$$

Computed in [Beneke,
Feldman, Seidel '01]

• The h_{λ} terms can be fitted or varied

- **•** Fitting the h_{λ} terms on data gives a satisfactory but uninformative result
- This parametrization **cannot account** for the analyticity properties of \mathcal{H}_λ

Analyticity properties of H_μ

• Poles due to the narrow charmonium resonances

Analyticity properties of H_μ

- Poles due to the narrow charmonium resonances
- Branch-cut starting at $4m_D²$

Analyticity properties of H_μ

- Poles due to the narrow charmonium resonances
- Branch-cut starting at $4m_D²$
- **•** Branch-cut starting at $4m_\pi^2 \rightarrow$ negligible (OZI suppressed)

Anatomy of H_μ in the SM

- The contribution of O₈ is negligible [Khodjamirian, Mannel, Wang, '12]
- The contributions of O_{3, 4, 5, 6} are suppressed by **small Wilson coefficients**

$$
\mathcal{O}_3 = (\bar{s}_L \gamma_\mu b_L) \sum_p (\bar{p} \gamma^\mu p) , \qquad \qquad \mathcal{O}_4 = (\bar{s}_L \gamma_\mu T^a b_L) \sum_p (\bar{p} \gamma^\mu T^a p) ,
$$

$$
\mathcal{O}_5 = (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho b_L) \sum_p (\bar{p} \gamma^\mu \gamma^\nu \gamma^\rho p) , \qquad \mathcal{O}_6 = (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho T^a b_L) \sum_p (\bar{p} \gamma^\mu \gamma^\nu \gamma^\rho T^a p) ,
$$

$\overline{\mathsf{Antomy}}$ of H_{μ} in the SM

$$
\mathcal{O}_1^q = (\bar{s}_L \gamma_\mu T^a q_L)(\bar{q}_L \gamma^\mu T^a b_L), \qquad \mathcal{O}_2^q = (\bar{s}_L \gamma_\mu q_L)(\bar{q}_L \gamma^\mu b_L)
$$

Light-quark loops are CKM suppressed \rightarrow **small contributions** even at the resonances [Khodjamirian, Mannel, Wang, '12]

→ The main contribution comes from O_1 ^c and O_2 ^c : "charm loop"

Anatomy of $H_μ$ in the SM

• The contribution of O₈ is negligible [Khodjamirian, Mannel, Wang, '12; Dimou, Lyon, Zwicky '12]

$$
\mathcal{O}_8 = \frac{g_s}{16\pi^2} m_b (\bar{s}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu}
$$
\nOne of the non-factorizable contributions

More involved analytic structure?

- $M_B > M_{D^*} + M_{Ds} \rightarrow$ The function $H_{\lambda}(p^2, q^2)$ has a branch cut in p^2 and the physical decay takes place on this branch cut: **Hλ is complex-valued!**
- Triangle diagrams are known to create *anomalous* branch cuts in q² [e.g. Lucha, Melikhov, Simula '06] \rightarrow Does this also apply here? We have no Lagrangian nor power counting!
- The presence and the impact of such a branch cut in our approach is under investigation

Theory inputs

 \mathcal{H}_{λ} can still be calculated in **two kinematics regions**:

- **Local** OPE $|q|^2 \ge m_b^2$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- **Light Cone** OPE $q^2 \ll 4m_c$ *2* [Khodjamirian, Mannel, Pivovarov, Wang '10]

Dispersive bound

• Main idea: Compute the charm-loop induced, inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to \mathcal{H}_{λ} [Gubernari, van Dyk, Virto '20]

+ other diagrams...

● The optical theorem gives a **shared bound** for **all the b → s processes**:

$$
1 > 2 \int_{(m_B + m_K)^2}^{\infty} \left| \hat{\mathcal{H}}_0^{B \to K}(t) \right|^2 dt + \sum_{\lambda} \left[2 \int_{(m_B + m_{K^*})^2}^{\infty} \left| \hat{\mathcal{H}}_{\lambda}^{B \to K^*}(t) \right|^2 dt + \int_{(m_{B_s} + m_{\phi})^2}^{\infty} \left| \hat{\mathcal{H}}_{\lambda}^{B_s \to \phi}(t) \right|^2 dt \right] + \Lambda_b \to \Lambda^{(*)} \dots
$$

known functions $\times \mathcal{H}_0^{B \to K}(t)$

GRvDV parametrization

● The bound can be "**diagonalized**" with **orthonormal polynomials** of the arc of the unit circle [Gubernari, van Dyk, Virto '20]

$$
\mathcal{H}_{\lambda}(z) = \frac{1}{\phi(z)\mathcal{P}(z)} \sum_{k=0}^{N} a_{\lambda,k} p_k(z)
$$

● The coefficients respect the **simple bound**:

$$
\sum_{n=0}^{\infty}\left\{2\Big|a_{0,n}^{B\to K}\Big|^2+\sum_{\lambda=\perp,\parallel,0}\left[2\Big|a_{\lambda,n}^{B\to K^*}\Big|^2+\Big|a_{\lambda,n}^{B_s\to\phi}\Big|^2\right]\right\}<
$$

$$
z(s) = \frac{\sqrt{4m_D^2 - s} - \sqrt{4m_D^2 - s_0}}{\sqrt{4m_D^2 - s} + \sqrt{4m_D^2 - s_0}}
$$

Numerical analysis

• The parametrization is fitted to **Example 20** [Gubernari, MR, van Dyk, Virto '22] $B \rightarrow K$, $B \rightarrow K^*$, $B_s \rightarrow \varphi$

using:

- 4 theory point at negative q^2 from the light cone OPE
- Experimental results at the J/ѱ
- Use an **under-constrained fit** and allow for **saturation of the dispersive bound**

→ The uncertainties are **truncation orderindependent**, i.e., increasing the expansion order does not change their size

 \rightarrow All p-values are larger than 11%

SM predictions

- Good overall agreement with previous theoretical approaches
	- Small deviation in the slope of $B_s \to \phi \mu \mu$
- **Larger** but **controlled** uncertainties especially near the J/ψ
	- The approach is **systematically improvable** (new channels, ѱ(2S) data...)

Confrontation with data

- This approach of the non-local form factors **does not solve the "B anomalies"**.
- In this approach, the greatest source of theoretical uncertainty now comes from **local form factors**.

Experimental results:

[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241, 2003.04831, 1606.04731, 2107.13428]

Méril Reboud - $\overline{09/09/2024}$ Additional plots can be found in the paper: 2206.03797 50

BSM analysis

- A combined BSM analysis would be **very CPU expensive** (130 correlated, non-Gaussian, nuisance parameters!)
- **•** Fit separately C_{9} and C_{10} for the three channels:
	- $B \rightarrow K\mu^+\mu^- + B_s \rightarrow \mu^+\mu^-$ ^(*)
	- $-$ B \rightarrow K^{*} μ ⁺ μ ⁻
	- $-$ B_s \rightarrow φμ⁺μ⁻

^(*) CMS recently updated their $B_s^{\prime} \rightarrow \mu^+\mu^$ measurement [2212.10311]

2.5 **SM** $B \to K\mu\mu + B_s \to \mu\mu$ 2.0 $B \to K^* \mu \mu$ $B_s \rightarrow \phi \mu \mu$ 1.5 1.0 $\mbox{Re }C_{10}^{\mbox{\scriptsize BSM}}$ $0.5 0.0$ -0.5 -1.0 EOS v1.0.2 -1.5 -2 -1 Ω $Re C_9^{\text{BSM}}$