$\Lambda_b \rightarrow \Lambda_{\mu\mu} status$

Michal Kreps

Beautiful and charming baryons, Durham, 9-11. Sep. 2024

Why $\Lambda_b \rightarrow \Lambda \mu \mu$

- Provides rich angular structure thanks to non-zero spin of initial state \rightarrow Λ baryon is very long lived and can be easily treated as stable particle in
- calculations
- Both experimentally and theoretically very clean from any interference and backgrounds
- If produced polarised, it offers access to information not available with mesons
- \rightarrow Con: Long \wedge lifetime decreases detection efficiency, so statistics is usually smaller than similar meson decays

Differential branching fraction

- Measured at LHCb with Run 1 data
- Theory prediction is currently more precise than experiment
- Experimentally measured relative to $\Lambda_b \rightarrow J/\psi \Lambda$ for which we do not have good BF
- \rightarrow No significant signal below J/ψ yet

Experimental normalisation

- → Measurements for $\Lambda_b \to J/\psi \Lambda$ come from Tevatron which measured $\frac{f_{\Lambda}}{f_d} \frac{B(\Lambda_b \to J/\psi \Lambda)}{B(B^0 \to J/\psi K_S)}$
- Best number comes from D0
- One needs also fragmentation fraction, in past one would average LEP and Tevatron
- But there is pT dependence, which means that averaging LEP and Tevatron is not good
- ➡ Needs measurement of both ingredients from same experiment \Rightarrow ongoing at LHCb

Angular distributions

- → With polarised production, 5 angles to describe kinematics
- ➡ Without polarisation, one is sensitive only to $\phi_l + \phi_b$
- \rightarrow Angle θ should correspond to production polarisation axis
 - Figure shows case for pp collisions with transverse polarisation

$$\begin{vmatrix} \hat{z}_{\Lambda} = \hat{p}_{\Lambda}^{\{}\\ \hat{y}_{\Lambda} = \hat{n} \end{vmatrix}$$

$$\hat{z}_{\ell\bar{\ell}} = \hat{p}_{\ell\bar{\ell}}^{\{\Lambda_b^0\}} \\ \hat{y}_{\ell\bar{\ell}} = \hat{n} \times \hat{p}_{\ell\bar{\ell}}^{\{\Lambda_b^0\}}$$

 Λ_b^0 rest-frame \hat{x}_{Λ} , $\hat{x}_{\ell ar{\ell}}$ $y_{\ell \bar{\ell}}$ $\hat{p}^{\{\Lambda^0_b\}}_{\Lambda}$

 Λ_b^0 rest-frame

 Λ rest-frame

 $\hat{z}^{\{\Lambda\}}_{\Lambda} = -\hat{p}^{\{\Lambda\}}_{\ell\bar{\ell}}$

Angular distributions

- Up to some constants, angular distribution in unpolarised case is $K(q^2, \cos\theta_\ell, \cos\theta_\Lambda, \phi) = \left(K_{1ss}\sin^2\theta_\ell + K_{1cc}\cos^2\theta_\ell + K_{1c}\cos\theta_\ell\right)$ + $(K_{2ss}\sin^2\theta_{\ell} + K_{2cc}\cos^2\theta_{\ell} + K_{2c}\cos\theta_{\ell})\cos\theta_{\Lambda}$ + $(K_{3sc}\sin\theta_{\ell}\cos\theta_{\ell} + K_{3s}\sin\theta_{\ell})\sin\theta_{\Lambda}\sin\phi$ + $(K_{4sc}\sin\theta_{\ell}\cos\theta_{\ell} + K_{4s}\sin\theta_{\ell})\sin\theta_{\Lambda}\cos\phi$.
- Specific features :
 - We can still define fraction of longitudinally polarised dilepton system There is non-zero hadron side forward-backward asymmetry thanks to weak decay of Λ with significant differences between two amplitudes $\alpha_{\Lambda} = \dots$

One can also construct combined forward-backward asymmetry

Angular distributions

- One can take ratios of observables order are sensitive only to:
 - Form factors

Short-scale physics
$$X_1 \equiv \frac{K_{1c}}{K_{2cc}} = -\frac{\operatorname{Re} \{\rho_2\}}{\alpha \operatorname{Re} \{\rho_4\}},$$

One can take ratios of observables to construct quantities which in first

Predictions

Predictions

- Predictions are generally reasonably precise Measurements on these plots come from very early analysis when we were figuring out what we should be actually doing
- With Tom Blake we extended work to polarised case, which adds another 24 observables
 - 10 have same structure as unpolarised case, just being multiplied by production polarisation
 - 14 are proportional to production polarisation and give access to more information

Prediction for polarised case

Obs.	Value	68% interval	Obs.	Value	68% interval
M_1	0.459	$\left[0.453, 0.465\right]$	M_6	0.000	$\left[-0.005, 0.006 ight]$
M_2	0.081	[0.071, 0.094]	M_7	-0.025	[-0.034, -0.014]
M_3	-0.005	[-0.014, -0.001]	M_8	-0.003	$\left[-0.016, 0.012 ight]$
M_4	-0.280	[-0.290, -0.262]	M_9	0.002	[0.001, 0.002]
M_5	-0.045	$\left[-0.053, -0.037 ight]$	M_{10}	0.002	[0.001, 0.002]
M_{11}	-0.366	[-0.383, -0.338]	M_{23}	-0.147	[-0.162, -0.133]
M_{12}	0.071	$\left[0.058, 0.081 ight]$	M_{24}	0.132	[0.120, 0.150]
M_{13}	0.001	$\left[-0.010, 0.007 ight]$	M_{25}	-0.001	[-0.001, -0.000]
M_{14}	0.243	$\left[0.230, 0.254\right]$	M_{26}	0.004	$\left[0.003, 0.005 ight]$
M_{15}	-0.052	$\left[-0.060, -0.045 ight]$	M_{27}	0.089	[0.081, 0.099]
M_{16}	0.003	[0.001, 0.009]	M_{28}	-0.089	[-0.100, -0.080]
M_{17}	0.004	$\left[-0.012, 0.018 ight]$	M_{29}	0.000	[0.000, 0.000]
M_{18}	0.029	$\left[0.018, 0.037 ight]$	M_{30}	0.000	[0.000, 0.000]
M_{19}	-0.001	[-0.002, -0.001]	M_{31}	0.000	[0.000, 0.000]
M_{20}	-0.003	$\left[-0.003, 0.002 ight]$	M_{32}	0.075	[0.035, 0.118]
M_{21}	0.002	[0.001, 0.003]	M_{33}	0.007	[0.001, 0.012]
M_{22}	-0.005	[-0.006, -0.003]	M_{34}	0.000	[-0.000, 0.000]

 $1 < q^2 < 6 \text{ GeV}^2$ $P_A = 1$

Obs.	Value	68% interval	Obs.	Value	68% interval
M_1	0.351	[0.349, 0.353]	M_6	0.187	[0.183, 0.192]
M_2	0.298	[0.294, 0.301]	M_7	-0.022	$\left[-0.025, -0.019 ight]$
M_3	-0.236	[-0.240, -0.230]	M_8	-0.100	$\left[-0.105, -0.095 ight]$
M_4	-0.195	[-0.200, -0.190]	M_9	0.000	[0.000, 0.001]
M_5	-0.154	[-0.159, -0.149]	M_{10}	-0.001	[-0.001, -0.000]
M_{11}	-0.064	[-0.069, -0.058]	M_{23}	-0.299	[-0.303, -0.295]
M_{12}	0.240	$\left[0.235, 0.245\right]$	M_{24}	0.337	$\left[0.335, 0.338\right]$
M_{13}	-0.292	[-0.295, -0.288]	M_{25}	-0.001	$\left[-0.001, -0.000 ight]$
M_{14}	0.034	$\left[0.031, 0.038\right]$	M_{26}	0.001	[0.000, 0.001]
M_{15}	-0.191	[-0.196, -0.186]	M_{27}	0.221	[0.216, 0.226]
M_{16}	0.151	[0.146, 0.156]	M_{28}	-0.187	[-0.191, -0.183]
M_{17}	0.102	[0.096, 0.107]	M_{29}	0.000	[0.000, 0.000]
M_{18}	0.021	[0.018, 0.024]	M_{30}	-0.001	[-0.001, -0.000]
M_{19}	0.000	[0.000, 0.000]	M_{31}	0.000	[0.000, 0.000]
M_{20}	-0.001	$\left[-0.001, -0.001\right]$	M_{32}	-0.046	[-0.050, -0.043]
M_{21}	0.000	[0.000, 0.001]	M_{33}	-0.053	$\left[-0.056, -0.050 ight]$
M_{22}	-0.002	[-0.002, -0.001]	M_{34}	0.000	[0.000, 0.000]

 $15 < q^2 < 20 \text{ GeV}^2$ $P_A = 1$

Latest measurement

- Uses Run 1 and part of Run 2 data from LHCb
- Measured only 15 < q² < 20
 GeV² bin as this is the only one having significant yield
- About 610 signal decays
- Used method of moments
 - Luckily, otherwise would run to troubles with value of α_A

Latest measurement

Well compatible with the SM Remaining observables compatible with zero

Global fit

- \blacktriangleright Uses just $\Lambda_b \rightarrow \Lambda \mu \mu$ observables and $B_s \rightarrow \mu \mu$ branching fraction
- as well as dedicated measurement with $\Lambda_b \rightarrow J/\psi \Lambda$

\rightarrow Interestingly it constrains production polarisation and Λ decay asymmetry

Production polarisation

- Measure angular moments in $\Lambda_b \rightarrow J/\psi \Lambda$ and then perform Bayesian analysis
- Uses same dataset as rare decays
- Polarisation consistent with zero without visible energy dependence

How to get polarised sample

- ➡ If there is enough interest in observables accessible only with polarisation, we can try to play some tricks
 - \diamond We measured polarisation only integrated over large η - p_T region, but it does not have to be constant
 - \diamond One can look for Λ_b coming from decays which itself could introduce polarisation • Obvious choice for LHCb would be Σ_b^* but my intuition is that it will not help

 - \bullet Top quark decays might be interesting, W in such case is polarised and so would be b-quark, this would be more suitable for ATLAS and CMS
- Each idea would need dedicated study whether it would work
- Each idea would mean lower statistics, on the other hand, one does not need to do all observables

What to expect

- data
- \rightarrow Good chance to see signal in more q^2 bins, we have about 4 times more data in Run 2
- Not yet clear what we can do with angular observables below J/ψ
- Want to look back to polarisation measurement to see whether there is at least some indication of non-zero polarisation somewhere

\rightarrow LHCb is working on update of $\Lambda_b \rightarrow \Lambda \mu \mu$ branching fraction with Run 1+2

Future

When we did work on full distribution, we made crude estimate of precision at LHCb

→
$$15 < q^2 < 20 \text{ GeV}^2$$

- Pure signal toys without any background
- ➡ Just scale yields from published numbers

	_
Obs.	$\operatorname{Run} 1$
M_1	0.021
M_2	0.042
M_3	0.030
M_4	0.050
M_5	0.078
M_6	0.055
M_7	0.090
M_8	0.041
M_9	0.090
M_{10}	0.041
M_{11}	0.051
M_{12}	0.078
M_{13}	0.054
M_{14}	0.088
M_{15}	0.136
M_{16}^{-1}	0.097
M_{17}	0.156

$\operatorname{Run} 2$	Upgrade	Phase II	Obs.	$\operatorname{Run} 1$	$\operatorname{Run} 2$	Upgrade	Pha
0.011	0.004	0.002	M_{18}	0.071	0.038	0.014	0.0
0.023	0.008	0.003	M_{19}	0.156	0.084	0.030	0.0
0.016	0.006	0.002	M_{20}	0.071	0.038	0.014	0.0
0.026	0.010	0.004	M_{21}	0.090	0.048	0.017	0.0
0.042	0.015	0.006	M_{22}	0.041	0.022	0.008	0.0
0.030	0.011	0.004	M_{23}	0.089	0.047	0.017	0.0
0.048	0.017	0.007	M_{24}	0.036	0.019	0.007	0.0
0.022	0.008	0.003	M_{25}	0.156	0.083	0.030	0.0
0.048	0.017	0.007	M_{26}	0.071	0.038	0.014	0.0
0.022	0.008	0.003	M_{27}	0.156	0.083	0.030	0.0
0.027	0.010	0.004	M_{28}	0.071	0.038	0.014	0.0
0.041	0.015	0.006	M_{29}	0.097	0.052	0.019	0.0
0.029	0.010	0.004	M_{30}	0.062	0.033	0.012	0.0
0.047	0.017	0.007	M_{31}	0.097	0.052	0.019	0.0
0.073	0.026	0.011	M_{32}	0.062	0.033	0.012	0.0
0.052	0.019	0.008	M_{33}	0.061	0.033	0.012	0.0
0.084	0.030	0.012	M_{34}	0.061	0.033	0.012	0.0
			1				

