$\Lambda_b \to \Lambda(\to pK^-)\ell^+\ell^-$

Beautiful and charming baryon workshop 9-11 September 2024 **T. Blake**

Why $\Lambda_b \to pK^-\ell^+\ell^-$ decays?

- Large data sets are available at the LHC experiments.
- Provides a consistency check of $b \rightarrow s\ell^+\ell^-$ anomalies in a different hadronic system.
- We have new measurements from the last two years to ponder on.

Why $\Lambda_b \to pK^-\ell^+\ell^-$ decays?

- Can access new Wilson coefficient combinations if Λ_b baryons are polarised at production:
 - Unfortunately the net polarisation is small at the LHC.

Could we exploit production in Z^0 or top or through decays of other baryons to access a polarised sample?

Challenge: complex resonance spectrum

- Final state receives contributions from large number of different Λ resonances with different J^P quantum numbers.
- Difficult to select regions of data dominated by single resonances (with possible exception of the $\Lambda(1520)$).

Challenge: complex resonance spectrum

- Final state receives contributions from large number of different Λ resonances with different J^P quantum numbers.
- Difficult to select regions of data dominated by single resonances.
- Spectrum is not dominated by the contribution from a single resonance.
- Largest contributions are from $\frac{3}{2}$ $\Lambda(1690)$ and $\frac{1}{2}$ $\Lambda(1800)$.

 $\Lambda_b \to p K^- \gamma$

Challenge: limited knowledge of form factors

- Reliable determinations are only available for $\Lambda_b \to \Lambda(1520)$ and primarily from Lattice (at low recoil).
- Situation is poor at large recoil:
 - Weak constraints from dispersive bounds.
 Y. Amhis et. al.
 [arXiv:2208.08937].
 - Quark-model predictions are not consistent with data.
- We only have quarkmodel predictions for most states.

Challenge: limited knowledge of form factors

- In $B^0/B^+/B_s^0$ systems, light-cone sum-rule calculations provide powerful constraints on form factors at large recoil. What are the prospects for similar techniques applied to baryon decays?
- Can first principle arguments tell us something about the pattern we would expect for the form factors of other states? e.g.
 - limiting behaviour at low/large recoil,
 - suppression of some form factors etc.

Differential branching fraction

 We now also have measurements where we do not try to separate states across the full spectrum.

Differential branching fraction

Challenges: complex angular distribution

- Can expand in terms of the helicity basis with $J \leq \frac{5}{2}$.
- Can express distribution in terms of associated Legendre polynomials:

$$\frac{32\pi^2}{3} \frac{\mathrm{d}^7 \Gamma}{\mathrm{d}q^2 \,\mathrm{d}m_{pK} \,\mathrm{d}\vec{\Omega}} = \sum_{i=1}^{178} K_i(q^2, m_{pK}) f_i(\vec{\Omega}) \,.$$

178 (46) observables in the polarised (unpolarised) case
 [JHEP 02 (2023) 189].

i	$f_i(ec\Omega)$	i	$f_i(ec\Omega)$
1	$\frac{1}{\sqrt{3}}P_0^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	24	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$
2	$2 \qquad P_0^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	25	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$
e.	$3 \qquad \sqrt{\frac{5}{3}} P_0^0(\cos\theta_p) P_2^0(\cos\theta_\ell)$	26	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$
4	$P_1^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	27	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$
Ę	$\sqrt{3}P_1^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	28	$\sqrt{\frac{11}{30}}P_5^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$
6	$\sqrt{5}P_1^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	29	$\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
7	$\sqrt{\frac{5}{3}}P_2^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	30	$\sqrt{\frac{3}{2}}P_1^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
8	$\sqrt{5}P_2^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	31	$\frac{1}{3\sqrt{6}}P_2^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
ç	$\frac{5}{\sqrt{3}}P_2^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	32	$\sqrt{rac{5}{6}}P_2^1(\cos heta_p)P_1^1(\cos heta_\ell)\sin\phi$
1	$0 \qquad \sqrt{\frac{7}{3}} P_3^0(\cos\theta_p) P_0^0(\cos\theta_\ell)$	33	$\frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
1	1 $\sqrt{7}P_3^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	34	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
1	$2 \qquad \sqrt{\frac{35}{3}} P_3^0(\cos\theta_p) P_2^0(\cos\theta_\ell)$	35	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
1	3 $\sqrt{3}P_4^0(\cos\theta_p)P_0^0(\cos\theta_\ell)$	36	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
1	$4 \qquad 3P_4^0(\cos\theta_p)P_1^0(\cos\theta_\ell)$	37	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\sin\phi$
1	5 $\sqrt{15}P_4^0(\cos\theta_p)P_2^0(\cos\theta_\ell)$	38	$\sqrt{\frac{11}{30}}P_5^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\sin\phi$
1	$6 \qquad \sqrt{\frac{11}{3}} P_5^0(\cos\theta_p) P_0^0(\cos\theta_\ell)$	39	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
1	$7 \qquad \sqrt{11} P_5^0(\cos\theta_p) P_1^0(\cos\theta_\ell)$	40	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
1	$8 \qquad \sqrt{\frac{55}{3}} P_5^0(\cos\theta_p) P_2^0(\cos\theta_\ell)$	41	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
1	9 $\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$	42	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\cos 2\phi$
2	$0 \qquad \sqrt{\frac{3}{2}} P_1^1(\cos\theta_p) P_1^1(\cos\theta_\ell) \cos\phi$	43	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$
2	$1 \qquad \frac{5}{3\sqrt{6}} P_2^1(\cos\theta_p) P_2^1(\cos\theta_\ell) \cos\phi$	44	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$
2	2 $\sqrt{\frac{5}{6}}P_2^1(\cos\theta_p)P_1^1(\cos\theta_\ell)\cos\phi$	45	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$
2	$3 \frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\ell)\cos\phi$	46	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\ell)\sin 2\phi$

Method-of-moments

- Number of observables is too large to measure in using a maximum likelihood fit to the angular distribution (at least with existing data sets).
- Instead use the method-of-moments (e.g. [PRD 91 (2015) 114012]).
- Define a set of weighting functions that project out the observables:

$$\int w_i(\vec{\Omega}) \frac{\mathrm{d}^7 \Gamma}{\mathrm{d}q^2 \,\mathrm{d}m_{pK} \,\mathrm{d}\vec{\Omega}} \mathrm{d}\vec{\Omega} = \frac{3}{32\pi^2} \int w_i(\vec{\Omega}) \sum_j K_j(m_{pK}, q^2) f_j(\vec{\Omega}) \mathrm{d}\vec{\Omega} = K_i(m_{pK}, q^2)$$

- Reduces analysis to a counting experiment:
 - Works with a finite data set even with an arbitrarily large number of observables.
 - × Less optimal in terms of precision than a maximum-likelihood estimate.

$\Lambda_b \to p K^- \mu^+ \mu^-$ angular distribution

Hadron-side asymmetry is due to interference between states.

Lepton-side asymmetry with familiar zerocrossing.

$\Lambda_b \to pK^-\ell^+\ell^-$ predictions?

- Some observables appear more-or-less sensitive to the unknown properties of the hadronic systems.
- Can we build observables to compensate for the lack of knowledge on the form-factors?
 c.f. P'_i observables in B⁰ → K^{*0}µ⁺µ⁻

Large uncertainty associated to unknown strong phase differences between states

[JHEP 02 (2023) 189]

Differential branching fraction

