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Why  decays? Λb → pK−ℓ+ℓ−

• Large data sets are available 
at the LHC experiments. 

• Provides a consistency check 
of  anomalies in a 
different hadronic system.  

• We have new measurements 
from the last two years to 
ponder on. 

b → sℓ+ℓ−
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Why  decays? Λb → pK−ℓ+ℓ−

• Can access new Wilson coefficient combinations if  baryons are 
polarised at production:  

‣ Unfortunately the net polarisation is small at the LHC.  

Could we exploit production in  or top or through decays of other 
baryons to access a polarised sample? 

Λb

Z0
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Challenge: complex resonance spectrum 

• Final state receives 
contributions from large 
number of different 
resonances with different 

 quantum numbers.  

• Difficult to select regions of 
data dominated by single 
resonances (with possible 
exception of the ). 

Λ

JP

Λ(1520)
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[JHEP 06 (2024) 098]
Λb → pK−γ



• Final state receives 
contributions from large 
number of different 
resonances with different  
quantum numbers.  

• Difficult to select regions of 
data dominated by single 
resonances. 

• Spectrum is not dominated by 
the contribution from a single 
resonance. 

• Largest contributions are 
from  and 

 .
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[JHEP 06 (2024) 098]
Λb → pK−γ

Challenge: complex resonance spectrum 



Challenge: limited knowledge of form factors
• Reliable determinations are only available for  and 

primarily from Lattice (at low recoil). 

• Situation is poor at large recoil:

Λb → Λ(1520)
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[PRL 131 (2023) 151801]

LQCD, S. Meinel et. al. 
[PRD D105 (2022) 054511]

‣ Weak constraints 
from dispersive 
bounds. 
Y. Amhis et. al. 
[arXiv:2208.08937]. 

‣ Quark-model 
predictions are not 
consistent with data. 

• We only have quark-
model predictions for 
most states.  



• In  systems, light-cone sum-rule calculations provide 
powerful constraints on form factors at large recoil. What are the 
prospects for similar techniques applied to baryon decays? 

• Can first principle arguments tell us something about the pattern 
we would expect for the form factors of other states?  e.g.  
‣ limiting behaviour at low/large recoil,  
‣ suppression of some form factors etc.

B0/B+/B0
s
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Challenge: limited knowledge of form factors



Differential branching fraction

• We now also have 
measurements 
where we do not 
try to separate 
states across the 
full spectrum. 
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Differential branching fraction
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Figure 4.1: Plots of the di↵erential branching fraction (upper left plot), di↵erential forward-
backwards lepton asymmetry (upper right plot) and di↵erential S1cc (lower plot). The green
bands are the 68% C.L. region, and the full line is the median of the distribution in the nominal
fit. We use dashed lines in the vetoed resonant region.

With our setup we can also predict B(⇤b ! ⇤⇤
�) [56]. We have

B(⇤b ! ⇤⇤
�) = ⌧⇤b

G
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ts|2↵emm
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(4.9)

If we restrict ourselves to the SM, we find:

B(⇤b ! ⇤⇤
�) = (3.5+2.7

�1.6) ⇥ 10�5
. (4.10)

Even though the large uncertainties forbid us to obtain a precise prediction, we notice that
B(⇤b ! ⇤⇤

�) has the same order of magnitude of LHCb measurement of B(⇤b ! ⇤�) [57]. This
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Qualitatively similar in 
shape to  predictions 
for from   
Y. Amhis et. al. 
[arXiv:2208.08937] 

Λ(1520)μ+μ−



• Can expand in terms of the helicity 
basis with . 

• Can express distribution in terms of 
associated Legendre polynomials:  

• 178 (46) observables in the 
polarised (unpolarised) case 
[JHEP 02 (2023) 189]. 

J ≤ 5
2

10

Table 1: Orthogonal basis functions for the angular terms f1(~⌦)–f46(~⌦) that arise in the unpolarised

case, where P
m
l (cos ✓) are associated Legendre polynomials and � = �p + �`.

i fi(~⌦) i fi(~⌦)

1 1
p

3
P

0
0 (cos ✓p)P 0

0 (cos ✓`) 24 1
2

q
7
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be considered separately. Integrating over all of the angles except for ✓p yields

d3�

dq2 dmpK dcos ✓p
=
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(52)
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The momentum ~k
⇤
1 is not defined for resonances with a pole mass below the pK

� threshold.
A common solution is to replace the Breit-Wigner shape by a Flatté model (see for example
the description of the ⇤(1405) state by the LHCb collaboration in Refs. [59, 60]). In the Flatté
model, the total width is expressed as the sum of partial widths for the decays ⇤ ! ⌃+

⇡
� and

⇤ ! pK
�. Identical widths are assumed for both decays, up-to phase-space factors. When

evaluating the partial widths, ~k
⇤
1 is replaced by the momentum of the ⇡

� at the pole-mass of the
resonance. Equation 42 only includes the contribution from the decay to pK

� in �partial. This
approach is also used for the ⇤(1405) state in this work.

The amplitude with the opposite proton helicity, h
⇤
�⇤,�1/2(mpK), is given by parity conserva-

tion
h

⇤
�⇤,�1/2(mpK) = P⇤(�1)l+1

h
⇤
�⇤,1/2(mpK) , (43)

where P⇤ is the parity of the ⇤ resonance.

3.3 Helicity amplitudes for the leptonic current

The lepton amplitudes are the projections of the lepton currents onto polarization vectors "µ

and have the general form

h̃
JV
�1,�2

= "µ(�1 � �2)ū(q2, �2)�
µ
v(q1, �1) , (44)

where �1 � �2 = 0 with JV = 0 (JV = 1) corresponds to the time-like (longitudinal) polarization.
Explicit expressions for the polarisation vectors are given in Appendix B. The lepton amplitudes
are calculated in the positively-charged lepton helicity-frame. There are two relevant Lorentz
structures, corresponding to vector (�µ = �

µ) and axialvector (�µ = �
µ
�5) currents. The vector

current appears with Wilson coefficients C7(0) and C9(0) and the axialvector current with C10(0) .
Inserting the Lorentz structures into the amplitudes yields

h̃
V,0
+1/2,+1/2 = 0 , h̃

A,0
+1/2,+1/2 = 2m` ,

h̃
V,1
+1/2,+1/2 = 2m` , h̃

A,1
+1/2,+1/2 = 0 ,

h̃
V,1
+1/2,�1/2 = �

p
2q2 , h̃

A,1
+1/2,�1/2 =

p
2q2�` ,

h̃
V,JV
��1,��2

= �h̃
V,JV
+�1,+�2

, h̃
A,JV
��1,��2

= h̃
A,JV
+�1,+�2

,

(45)

where V and A refer to (axial)vector and �` is the lepton velocity in the dilepton rest frame, i.e.

�` =
|~q1|
q
0
1

=

s

1 �
4m

2
`

q2
. (46)

4 Angular distribution

Expanding the expression for the differential decay rate and performing sums over all of the
relevant helicities and ⇤ resonances up-to J⇤ = 5

2 yields

32⇡
2

3

d7�

dq2 dmpK d~⌦
=

178X

i=1

Ki(q
2
, mpK)fi(~⌦) . (47)

The Ki are bilinear combinations of products of the amplitudes for the ⇤
0
b and ⇤ decays and will

be examined in more detail in Sec. 6. We simplify the expansion of the differential decay rate by
noting that the helicity of the ⇤ resonance can take any value within |�⇤|  J⇤ and that the
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Challenges: complex angular 
distribution



Method-of-moments
• Number of observables is too large to measure in using a maximum 

likelihood fit to the angular distribution (at least with existing data sets).  

• Instead use the method-of-moments (e.g. [PRD 91 (2015) 114012]). 

• Define a set of weighting functions that project out the observables: 

• Reduces analysis to a counting experiment:  

✓ Works with a finite data set even with an arbitrarily large number of 
observables.  

x Less optimal in terms of precision than a maximum-likelihood estimate. 
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5 Method of moments

The coefficients Ki can be determined experimentally using the method-of-moments [61], with a
set of weighting functions, wi(⌦), that are orthogonal to the angular terms, i.e.

Z
fi(~⌦)wj(~⌦)d~⌦ =

32⇡
2

3
�ij . (54)

The moments can be extracted using an integral over the differential decay rate,
Z

wi(~⌦)
d7�

dq2 dmpK d~⌦
d~⌦ =

3

32⇡2

Z
wi(~⌦)

X

j

Kj(mpK , q
2)fj(~⌦)d~⌦ = Ki(mpK , q

2) . (55)

The moments corresponding to the basis functions proportional to cos ✓b, with indices 47–92, can
be obtained from the moments for unpolarized ⇤

0
b baryons, with indices 1–46, by multiplication

with 1
p

3
P⇤0

b
, due to the structure of the spin density matrix, see Eq. (18), and choosing orthogonal

basis functions with the normalisation given in Eq. (54). As a result of choosing f1(~⌦) = 1
p

3
, the

first moment corresponds to the decay rate

d2�

dq2 dmpK
=

p
3K1 . (56)

It is convenient to define a set of angular observables that are independent of the total rate

Ki = Ki

. d2�

dq2dmpK
=

Kip
3K1

. (57)

In a sample with Ndata data points in a given bin of mpK and q
2, the average value of Ki,

⌦
Ki

↵
bin =

Z

bin
Kidq

2dmpK

.Z

bin

p
3K1dq

2dmpK , (58)

can be obtained using Monté-Carlo integration as

⌦
Ki

↵data
bin =

1

Ndata

NdataX

n=1

wi(~⌦n) . (59)

The method of moments guarantees a Gaussian likelihood for the observables regardless of
sample size. Because of our choice of basis functions, fi(~⌦), the weighting functions are simply
wi(~⌦) = fi(~⌦). The numerical factors appearing in the basis functions in Sec. 4 are chosen to
ensure that Eq. (54) is fulfilled. Beyond this convenient detail, the use of orthogonal functions
has the advantage that the correlations between the different observables are minimised in the
measurement of the moments.

6 Explicit expressions for the angular coefficients

The angular coefficients, Ki, involve bilinear combinations of amplitudes that arise from taking
the product of M and its complex conjugate. In what follows below, we label the indices
appearing in M† with primes. Allowing for even and odd parity as well as spins up to 5

2 results in
complex and long expressions. The structure of the different coefficients is summarised in Table 3.
The left-most columns of the table summarise the appearing state combinations, the right-most
columns give details about the structure of the coefficients and the interfering amplitudes. The
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 angular distributionΛb → pK−μ+μ−
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Hadron-side asymmetry 
is due to interference 
between states. 

Lepton-side asymmetry 
with familiar zero-
crossing. 



 predictions?Λb → pK−ℓ+ℓ−

• Some observables appear more-or-less 
sensitive to the unknown properties of 
the hadronic systems.  

• Can we build observables to 
compensate for the lack of 
knowledge on the form-factors?  
c.f.  observables in P′￼i B0 → K*0μ+μ−

13

Figure 5: Differential branching fraction as a function of mpK and q
2

for an ensemble of ⇤ resonances

in the SM (black line) and different non-SM scenarios (coloured lines). The possible values given the

unknown phases, �⇤, is represented by the lighter gray band and the other uncertainties by the darker gray

band. For q
2 >⇠ 12.4 GeV

2
/c

4
, the available phase-space suppresses the contribution from higher-mass ⇤

resonances.
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Figure 6: Observables K2,3,4,32 as a function of q
2

for an ensemble of ⇤ resonances in the SM (black line)

and different non-SM scenarios (coloured lines using the same colour code as in Fig. 5.). The possible

values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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[JHEP 02 (2023) 189]

Large uncertainty associated 
to unknown strong phase 

differences between states
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