Extended scalar sectors 10+ years after the Higgs discovery

Tania Robens

Rudjer Boskovic Institute

IPPP Seminar

IPPP, Durham 18.1.24

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

3

< ロ > < 同 > < 回 > < 回 > < 回 >

Introduction

- 2 Brief example: 2HDMs
- 3 Experimental status
- Interplay between different constraints
- 5 Multi scalar final states
- 6 Finite width effects
- New scalars at Higgs factories

8 Summary

- - E - F

3

Image: A mathematical states and a mathem

After Higgs discovery: Open questions

Higgs discovery in 2012 \Rightarrow last building block discovered

? Any remaining questions ?

- Why is the SM the way it is ??
 - \Rightarrow search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 - \Rightarrow e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision

for all: Search for Physics beyond the SM (BSM)

 \Longrightarrow main test ground for this: particle colliders \Longleftarrow

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Special role of the scalar sector

• Higgs potential in the SM

$$\mathbf{V} = -\mu^2 \, \mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} + \lambda \, \left(\mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} \right)^2, \quad \mathbf{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{h}(\mathbf{x}) \end{pmatrix}$$

 \Rightarrow mass for Higgs Boson and Gauge Bosons

$$m_h^2 \,=\, 2\,\lambda\,v^2,\,m_W\,=\,g\,\frac{v}{2},\,m_Z\,=\,\sqrt{g^2+(g')^2}\,\frac{v}{2}$$

where v: Vacuum expectation value of the Higgs field, g, g'': couplings in SU(2) \times U(1)

 $\Rightarrow\,$ everything determined in terms of gauge couplings, v, and λ

form of potential determines minimum, electroweak vacuum structure

- \Rightarrow stability of the Universe, electroweak phase transition, etc
- full test requires checks of *hhh*, *hhhh* couplings
- ⇒ so far: only limits; possible only at future machines [HL-LHC: constraints on *bhbh*]

constraints on nn

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

(日)

Models

- new scalars ⇒ models with scalar extensions
- many possibilites: introduce new $SU(2) \times U(1)$ singlets, doublets, triplets, ...
- unitarity \Rightarrow important sum rule*

$$\sum_{i}g_{i}^{2}(h_{i})=g_{SM}^{2}$$

for coupling g to vector bosons

• many scenarios \Rightarrow signal strength poses strong constraints

* modified in presence e.g. of doubly charged scalars, see Gunion, Haber, Wudka, PRD 43 (1991) 904-912.

Tania Robens

Extended scalar sectors

< □ → < □ → < ≡ → < ≡ → < ≡ → < ≡ →
 IPPP Seminar, 18.1.24

What about extensions ?

• in principle: no limit

can add more singlets/ doublets/ triplets/ ...

⇒ consequence: will enhance particle content

additional (pseudo)scalar neutral, additional charged, doubly charged, etc particles

common feature:

new scalar states, which can now also be produced/ decay into each other/ etc

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Particle content

typical content: singlet extensions ⇒ additional CP-even/ odd mass eigenstates 2HDMs, 3HDMs: add additional charged scalars

- e.g. 2 real scalars \Rightarrow **3 CP-even neutral scalars**
- 2HDM \rightarrow 2 CP-even, one CP odd neutral scalar, and charged scalars

• ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How can we see new physics ?

Different ways to see new physics effects

- Option 1: see a direct deviation, in best of all cases a bump, and/ or something similar ⇒ clear enhanced rates for certain final states, mediated by new physics
- Option 2: observe signatures that do not exist in SM, e.g. events with large missing energy (hint of model containting DM)
- Option 3: observe deviations in SM-like quantities which are small(ish): ⇒ loop-induced deviations, requiring precision measurements
- NB: these can in principle also be large $!! \Rightarrow$ all models floating around to explain m_W^{CDF}

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

(日)

Current (large) collider landscape

[https://europeanstrategy.cern/home]

pp colliders: LHC, FCC-hh

LHC: center-of-mass energy: 8/ 13/ 13.6 TeV, since 2009/ ongoing HL-LHC: 14 TeV, high luminosity (2027-2040) FCC-hh: 100 TeV, under discussion

 e^+e^- colliders: ILC/ CLIC/ FCC-ee, CePC

in plan, high priority in Europe, various center-of-mass energies discussed, priority $\sim~240-250\,{\rm GeV}$ "Higgs factories"

 $\mu^+\mu^-$ colliders

under discussion, early stages [EU-funded design study MuCol started 1.3.23]

Tania Robens

Extended scalar sectors

Example: Two Higgs Doublet Models

- a popular extension: Two Higgs Doublet models
 - extend SM scalar sector by one additional doublet
 - a priori: can lead to flavour changing neutral currents
 - way to prevent this: introduce additional symmetries in potential

particle content:
$$\underbrace{h, H}_{CP-even}$$
, \underbrace{A}_{CP-odd} , H^{\pm}

parameters: **masses**, + tan β , cos $(\beta - \alpha)$, m_{12}

- also subject to various constraints: **B-physics, direct** searches, signal strength, ...
- different types of Yukawa couplings ⇒ different effects of constraints

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

3

2HDM parameter space

[F. Kling, S. Su, W. Su, JHEP 06 (2020) 163]

combination of various direct searches, ATLAS/ CMS, at 8/ 13 TeV

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

< 4 P + <

Current constraints on alignment in 2HDMs

[ATLAS-CONF-2021-053]

2HDM parameter space, previous plots w all constraints

[thanks to K. Radychenko, tool presented in 2309.17431]

Extended scalar sectors

IPPP Seminar, 18.1.24

Recent search results...

How are the experiments doing ?

[slides from TR, Higgs Working Group meeting 11/23, prepared by N. Rompotis/ L. Zivkovic [ATLAS], S. Laurila/

M. D'Alfonso [CMS]]

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

3

(日) (同) (三) (三) (三)

Some recent ATLAS results

- This is only a flavour of some ATLAS results since our last workshop that are related to Extended Higgs sectors: see the linked public documents for more details
- Charged Higgs: $pp \rightarrow tt$ with $t \rightarrow H+A$ in $e\mu\mu$ final state

Tania Robens

Extended scalar sectors

Some recent ATLAS results

Tania Robens

Extended scalar sectors

Some recent ATLAS results

Tania Robens

Extended scalar sectors

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

< ロ > < 同 > < 回 > < 回 > < 回

Extended scalar sectors

IPPP Seminar, 18.1.24

Image: Image:

These are just a couple of examples; all the latest summary plots are available at: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG</u>

LHC Higgs Workshop - November 2023 - M. d'Alfonso (MIT) & S. Laurila (CERN)

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consequences of combining constraints: flavour, electroweak precision, and signal strength

- non-singlet scenarios: also strong constraints from flavour
- typical example: 2HDMs, constraints in the $(m_{H^{\pm}}, \tan \beta)$ plane
- \Rightarrow sets lower limit on charged mass
- \Rightarrow strongly correlated to other additional masses via electroweak precision measurements (*S*, *T*, *U*)

Lower mass bound on additional scalars

- Consequence: "typical" channels at e^+e^- colliders [e.g. *HA*] require higher center of mass energies [e.g. TeV range]
- example here: THDMa (2HDM+ singlet) [TR, Symmetry 13 (2021) 12,

2341]

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

Image: A math a math

3

Example: B- physics constraints [TR, PoS ICHEP2022 176]

Constraints from
$$B \rightarrow X_s \gamma, B_s \rightarrow \mu^+ \mu^-, \Delta M_s$$

- $B \rightarrow X_s \gamma$: use fit from updated calculation of Misiak ea, [JHEP 2006 (2020) 175, Eur.Phys.J. C77 (2017) no.3, 201], $\Rightarrow \tan \beta_{\min} (m_{H^{\pm}})$
- $B_s \rightarrow \mu^+ \mu^-$, ΔM_s : via SPheno, compare to PDG value, HFLAV value [Eur.Phys.J.C 81 (2021) 3, 226]

$$\begin{split} R_{\gamma}^{\text{exp}} &\equiv \frac{\mathcal{B}_{(s+d)\gamma}}{\mathcal{B}_{\mathcal{C}\ell\nu}} = (3.22 \pm 0.15) \times 10^3, \\ \Delta M_s \, (\text{ps}^{-1}) &= 17.757 \pm 0.020 \pm 0.007, \\ \left(\mathcal{B}_s \to \mu^+ \mu^-\right)^{\text{PDG}} &= [3.01 \pm 0.35] \times 10^{-9} \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回

Tania Robens

Extended scalar sectors

Oblique parameters via SPheno, compare to GFitter [Eur. Phys. J., C78(8):675]

In this particular case: ...

• In a general scan [letting 10 parameters float]:

heavy scalar masses $\gtrsim\,500\,{\rm GeV}$

Consequence

• channels as e.g. HA only accessible for $\gtrsim 1 \,\mathrm{TeV}$ "partonic" center of mass energies

[statement different for other Yukawa structures]

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

< ロ > < 同 > < 回 > < 回 > < 回 >

LHC: Multi scalar production modes

[TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J. C80 (2020) no.2, 151]

ADDING TWO REAL SCALAR SINGLETS

Scalar potential $(\Phi: SU(2)_L \text{ doublet, } S, X: SU(2)_L \text{ singlets})$

$$\begin{split} \mathcal{V} = & \mu_{\Phi}^2 \Phi^{\dagger} \Phi + \mu_{S}^2 S^2 + \mu_{\chi}^2 X^2 + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \lambda_{S} S^4 + + \lambda_{\chi} X^4 + \\ & \lambda_{\Phi S} \Phi^{\dagger} \Phi S^2 + \lambda_{\Phi \chi} \Phi^{\dagger} \Phi X^2 + \lambda_{S X} S^2 X^2. \end{split}$$

Imposed $\mathbb{Z}_2 \times \mathbb{Z}_2'$ symmetry, which is spontaneously broken by singlet vevs.

 \Rightarrow three CP-even neutral Higgs bosons: h_1, h_2, h_3

Two interesting cases:

Case (a): $\langle S \rangle \neq 0, \langle X \rangle = 0 \Rightarrow X$ is DM candidate;

Case (b): $\langle S \rangle \neq 0, \langle X \rangle \neq 0 \Rightarrow$ all scalar fields mix.

Again, Higgs couplings to SM fermions and bosons are *universally reduced by mixing.*

Tim Stefaniak (DESY) | BSM Higgs physics | ALPS 2019 | 27 April 2019

Tania Robens

Escendensterial stelensfrom T. Stefaniak, Tatkpat StrRing 2018, Appli '19]

Possible production and decay patterns

$M_1 \leq M_2 \leq M_3$

Production modes at *pp* and decays

$$pp \rightarrow h_3 \rightarrow h_1 h_1;$$
 $pp \rightarrow h_3 \rightarrow h_2 h_2;$
 $pp \rightarrow h_2 \rightarrow h_1 h_1;$ $pp \rightarrow h_3 \rightarrow h_1 h_2$

$$h_2 \rightarrow SM; h_2 \rightarrow h_1 h_1; h_1 \rightarrow SM$$

\Rightarrow two scalars with same or different mass decaying directly to SM, or $h_1 h_1 h_1$, or $h_1 h_1 h_1$

 $[h_1 \text{ decays further into SM particles}]$

$$\begin{bmatrix} BRs \text{ of } h_i \text{ into } X_{SM} = \frac{\kappa_i \Gamma_{h_i}^{SM} \times (M_i)}{\kappa_i \Gamma_{bot}^{SM} (M_i) + \sum_{j,k} \Gamma_{h_j} \to h_j h_k}; \kappa_i: \text{ rescaling for } h_i \end{bmatrix}$$
Tania Robens
Extended scalar sectors
IPPP Seminar, 18.1.24

Benchmark points/ planes [ASymmetric/ Symmetric]

AS BP1: $h_3 \rightarrow h_1 h_2$ ($h_3 = h_{125}$)

SM-like decays for both scalars: $\sim~3~{\rm pb};~h_1^3$ final states: $\sim~3{\rm pb}$

AS BP2: $h_3 \rightarrow h_1 h_2$ ($h_2 = h_{125}$)

SM-like decays for both scalars: $\sim~0.6\,\mathrm{pb}$

AS BP3: $h_3 \rightarrow h_1 h_2$ ($h_1 = h_{125}$)

(a) SM-like decays for both scalars $\sim 0.3\,{
m pb}$; (b) h_1^3 final states: $\sim 0.14\,{
m pb}$

S BP4: $h_2 \rightarrow h_1 h_1$ ($h_3 = h_{125}$)

up to 60 pb

S BP5: $h_3 \rightarrow h_1 h_1$ ($h_2 = h_{125}$)

up to $2.5\,\mathrm{pb}$

S BP6: $h_3 \rightarrow h_2 h_2$ ($h_1 = h_{125}$)

SM-like decays: up to 0.5 pb; h_1^4 final states: around 14 fb

Tania Robens

IPPP Seminar, 18.1.24

3

イロト イヨト イヨト イヨト

Introduction 2HDMs Experimental status Interplay Multi scalar final states Finite width effects Higgs factories Summary

LHC: Multi scalar production modes

[TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J. C80 (2020) no.2, 151; updates from arXiv:2305.08595 and HHH Workshop talk, 16.7.23]

2 real singlet extension \Rightarrow 2 additional scalars ($M_1 \leq M_2 \leq M_3$; $M_i \in [0; 1 \text{TeV}]$) [1 mass always at 125 GeV, others free]

new plots: updates from paper with full Run II results

Testing the Higgs potential

• remember:

$$\mathbf{V} = -\mu^2 \, \mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} + \lambda \, \left(\mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} \right)^2, \quad \mathbf{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{h}(\mathbf{x}) \end{pmatrix}$$

also predicts hhh and hhhh interactions

• so far: only constraints

 \implies future accessibility ? \Leftarrow

Start with resonance enhanced BSM scenarios for hhh

Image: A math a math

Introduction 2HDMs Experimental status Interplay Multi scalar final states Finite width effects Higgs factories Summary

BP3: $h_3 o h_1 h_2 \; (h_1 = h_{125})$ [up to 0.3 pb]

BP3

$$\begin{split} &\sigma(pp \rightarrow h_3) \simeq 0.06 \cdot \sigma(pp \rightarrow h_{SM})|_{m=M_3} \\ &\operatorname{BR}(h_3 \rightarrow h_{125}h_2) \text{ mostly} \\ &\sim 50\%. \\ &\operatorname{if} M_2 < 250 \, \mathrm{GeV}: \Rightarrow h_2 \rightarrow \mathrm{SM} \\ &\operatorname{particles.} \\ &\operatorname{if} M_2 > 250 \, \mathrm{GeV}: \\ &\Rightarrow \mathrm{BR}(h_2 \rightarrow h_{125}h_{125}) \sim 70\%, \end{split}$$

⇒ spectacular triple-Higgs signature

[up to 140 fb; maximal close to thresholds]

bounds from $p p \rightarrow h_3 \rightarrow h_1 h_2$ [CMS, Run II, JHEP 11 (2021) 057]

Tania Robens

Extended scalar sectors

Exploration of $h_1h_1h_1$ final state at HL-LHC

[A. Papaefstathiou, TR, G. Tetlalmatzi-Xolocotzi, JHEP 05 (2021) 193]

• 3 scalar states h_1 , h_2 , h_3 that mix

concentrate on $p p \rightarrow h_3 \rightarrow h_2 h_1 \rightarrow h_1 h_1 h_1 \rightarrow b \overline{b} b \overline{b} b \overline{b} b$

- \Rightarrow select points on BP3 which might be accessible at HL-LHC
- ⇒ perform detailed analysis including SM background, hadronization, ...
 - tools: implementation using full t, b mass dependence, leading order [UFO/ Madgraph/ Herwig] [analysis: use K-factors]

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

< ロ > < 同 > < 回 > < 回 > < 回 >

Benchmark points and results

Ш

$egin{array}{c} (M_2,M_3) \ [{ m GeV}] \end{array}$	$egin{array}{c} \sigma(pp ightarrow h_1 h_1 h_1) \ [{ m fb}] \end{array}$	$\sigma(pp ightarrow 3bar{b}) \ [{ m fb}]$	$ sig _{300 { m fb}^{-1}}$	$sig _{3000\mathrm{fb}^{-1}}$
(255, 504)	32.40	6.40	2.92	9.23
(263, 455)	50.36	9.95	4.78	15.11
(287, 502)	39.61	7.82	4.01	12.68
(290, 454)	49.00	9.68	5.02	15.86
(320, 503)	35.88	7.09	3.76	11.88
(264, 504)	37.67	7.44	3.56	11.27
(280, 455)	51.00	10.07	5.18	16.39
(300, 475)	43.92	8.68	4.64	14.68
(310, 500)	37.90	7.49	4.09	12.94
(280, 500)	40.26	7.95	4.00	12.65

discovery, exclusion \Rightarrow at HL-LHC, all points within reach \Leftarrow

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

3

<ロ> (日) (日) (日) (日) (日)

What about other channels ?

[extrapolation of $36 \, {\rm fb}^{-1}$ and HL projections]

\Rightarrow model can be tested from various angles \Leftarrow

[Phys. Rev. Lett. 122 (2019) 121803; Phys. Lett. B800 (2020) 135103; JHEP 06 (2018) 127; CERN Yellow Rep. Monogr. 7 (2019) 221; Eur. Phys. J. C78 (2018) 24; ATL-PHYS-PUB-2018-022]

Tania Robens

Extended scalar sectors

What about LHC search interpretations ?

- so far: 2 searches (by CMS) with public results and TRSM interpretations
- both target $p p \rightarrow X \rightarrow Y h$
- final states: $b \, \bar{b} \, b \, \bar{b}$ [2204.12413], $b \, \bar{b} \, \gamma \, \gamma$ [CMS-PAS-HIG-21-011]
- compares to maximal rates in TRSM and NMSSM

[TRSM rates available from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG3EX]

• Work in progress: Optimized automated scan for maximal rates for any final states [A. Ghosh, TR, J. Veatch, R. Zhang]

Results [using non-optimized scan]

expected

observed

Another important topic: finite width effects

• Experiments: often use factorized approach:

 $pp \rightarrow X, X \rightarrow YZ$

- quantum mechanics: only stable particles are defined in S-matrix elements, everything else approximation
- in reality: case by case study
- wrong: assume factorization always works

Another topic: finite width effects

[in collaboration with F. Feuerstake/ E. Fuchs/ D. Winterbottom]

- scenario: heavy resonance decaying to h₁₂₅ h₁₂₅
 [already partially discussed in Rev.Phys. 5 (2020) 100045 and references therein]
- scenario discussed here:

$$m_H = 300 \,\text{GeV}; \,\sin\theta = 0.17; \,\tan\beta = 3.3$$

 $\Gamma_H = 0.54 \,\text{GeV}, \,\text{BR}_{H \to h h} = 0.55$
 $\sigma_{hh} = 69.77(4) \,\text{fb}, \,\sigma_{viaH} = 58.65(2) \,\text{fb}, \,\sigma_{noH} = 14.195(7) \,\text{fb}$

Interference: $\sigma_{hh} - (\sigma_{viaH} + \sigma_{noH})$ [= -3.08(5) fb]

Results [13 TeV, $\int \mathcal{L} = 139 \, \mathrm{fb}^{-1}$]

Tania Robens

Extended scalar sectors

Another topic: finite width effects

[in collaboration with F. Feuerstake/ E. Fuchs/ D. Winterbottom]

- scenario: heavy resonance decaying to h_{125} h_{125} [already partially discussed in Rev.Phys. 5 (2020) 100045 and references therein]
- scenario discussed here:

$$m_H = 600 \text{ GeV}; \sin \theta = 0.17; \tan \beta = 1.6$$

 $\Gamma_H = 4.98 \text{GeV}, BR_{H \to hh} = 0.34$
 $\sigma_{hh} = 26.746(7) \text{fb}, \sigma_{viaH} = 7.90(1) \text{fb}, \sigma_{noH} = 15.11(1) \text{fb}$

Interference: $\sigma_{hh} - (\sigma_{viaH} + \sigma_{noH}) = 3.74(2) \text{ fb}$

Image: A mathematical states and a mathem

Results [13 TeV, $\int \mathcal{L} = 139 \, \mathrm{fb}^{-1}$]

Tania Robens

Extended scalar sectors

Extra scalars at Higgs factories ($e^+ e^- @ 240 - 250 \text{ GeV}$)

various production modes possible

- 1) easiest example: $e^+ e^- \rightarrow Z h_1$, onshell production interesting up to $m_1 \sim 160 \, {\rm GeV}$
- 2) in models with various scalars: e.g. also $e^+ e^- \rightarrow h_1 h_2$ (e.g. from 2HDMs); example processes and bounds from LEP in Eur.Phys.J.C 47 (2006) 547-587

again: for onshell production, $\sum_i\,m_i\,\leq\,250\,{\rm GeV}$

3) another (final) option: look at $e^+e^- \rightarrow h_i Z$, $h_i \rightarrow h_j h_k$

already quite a few studies for 1), 3) available

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scalar strahlung for additional light scalars

$e^+ e^- \rightarrow Z^* \rightarrow Zh, e^+ e^- \rightarrow \nu \bar{\nu} h$ (VBF)

LO analytic expressions e.g. in Kilian ea, Phys.Lett.B 373 (1996) 135-140]

- rule of thumb: rescaling ≤ 0.1
- \bullet \Rightarrow maximal production cross sections around 50 fb
- $\sim 10^5$ events using full luminosity

Tania Robens

Extended scalar sectors

Singlet extensions

[TR, Symmetry 2023, 15(1), 27 and Springer Proc.Phys. 292 (2023) 141-152]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J.C 80 (2020) 2, 151]

cross sections at 250 GeV

convoluted with decay rates

final states: $Z b \overline{b}$, $Z h_1 h_1$, $Z c \overline{c}$, $Z \tau^+ \tau^-$

Tania Robens

Extended scalar sectors

Possible model reach

[slide from A.F.Zarnecki, Higgs 2023]

Motivation

Possible scenarios

Benchmark points consistent with current experimental and theoretical bounds

Two-Real-Singlet Model thanks to Tania Robens see arXiv:2209.10996 arXiv:2305.08595

Two Higgs-Doublet Model thanks to Kateryna Radchenko thdmTool package, see arXiv:2309.17431

Minimal R-symmetric Supersymmetric SM thanks to Wojciech Kotlarski arXiv:1511.09334

A.F.Żarnecki (University of Warsaw)

Light scalars at Higgs factory

ggs 2023 01.12.2023 4 / 19

Extended scalar sectors

Possible model reach

[slide from A.F.Zarnecki, Higgs 2023]

Results

Cross section limits

Cross section limits for $\sigma(e^+e^- \rightarrow ZS) \cdot BR(S \rightarrow \tau\tau)$ compared with allowed scenarios in different models

Extended scalar sectors

$h \rightarrow 4j/4b/4c$ final states, Z h production

[Z. Liu, L.-T. Wang, H. Zhang, Chin.Phys.C 41 (2017) 6, 063102]

95% CL bounds, $\sqrt{s} = 240 \,\text{GeV}, \int \mathcal{L} = 5 \,\text{ab}^{-1}$

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

イロト イヨト イヨト イヨト

Singlet extension, with connection to strong first-order electroweak phase transition

[J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, Phys.Rev.D 101 (2020) 11, 115035]

blue band = strong first-order electroweak phase transition

comment: current constraints lead to prediction $\lesssim 10^{-1}$

[invisible BR, signal strength, assumes SM-like decay to *bs*] [projections taken from Z. Liu, L.-T. Wang, and H. Zhang, Chin. Phys. C 41, 063102 (2017)]⁺ = → + (至) → = → → ⊂ Tania Robens IPPP Seminar, 18.1.24

Ongoing ECFA study: Direct discovery potential at Higgs factories,

Extra scalar subgroup [CERN e-group: ECFA-WHF-WG1-SRCH, see also J. de Blas ea, arXiv:2401.07564]

Expert team activities

.F.Ż	arneck	i (U. of Warsaw)	EXscalar report	June 27, 2023	6	
		again assun invisible,)	ning different decay channels for $\boldsymbol{\varphi}$	(bb, ττ,		
			$h_{125} \rightarrow \varphi \ \varphi$			
	 light scalar production in 125 GeV Higgs boson decays 					
		with different possible decay channels: bb, $\tau\tau$, invisible, \ldots				
			$e{\cdot}e{\cdot} \to Z \ \varphi$			
	 search for light exotic scalars in the scalar-strahlung process 					
	Two	targets ident	ified:	document.		
Discussion on the choice o		cussion on t	he choice of benchmark scenar	ios included in shared goog	ins and gle	
	Sec	econd meeting on zoom on June 20		Overview of light scalar	rscenarios	

Want to get involved ? Let us know ! Target: Whitepaper, input for next European Strategy report

Tania Robens

Extended scalar sectors

Summary

Models with extended scalar sectors provide an interesting setup to introduce new scalar particles, with different CP/ charge quantum numbers

⇒ leads to many new interesting signatures, some of which are not yet covered by current searches

some of these: also interesting connections of electroweak phase transitions/ gravitational waves/ etc

Next steps

• (re) investigate models with extended scalar sectors at e^+e^- colliders [ECFA effort ongoing]

Many things to do

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

(ロ) (部) (目) (日) (日)

On an unrelated note...

had a very nice HHH workshop in Dubrovnik last year

[https://indico.cern.ch/event/1232581/, Whitepaper in progress]

⇒ da capo this year (by popular demand): ⇐ IUC, Dubrovnik, 29.-31.7.2024

! Save the date !

[Pics by IUC Dubrovnik/ V. Brigljevic]

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

(日)

Introduction 2HDMs Experimental status Interplay Multi scalar final states Finite width effects Higgs factories Summary

Appendix

Tania Robens

Extended scalar sectors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ATLAS-PHYS-PUB-2021-031

Extended scalar sectors

IPPP Seminar, 18.1.24

(ロ) (部) (目) (日) (日)

Other possible extensions

- A priori: no limit to extend scalar sector
- make sure you
 - have a suitable ew breaking mechanism, including a Higgs candidate at $\sim~125\,{\rm GeV}$
 - can explain current measurements
 - are **not excluded by current searches** and precision observables
- nice add ons:
 - can push vacuum breakdown to higher scales
 - can explain additional features, e.g. dark matter, or hierarchies in quark mass sector

• ...

- Multitude of models out there
- adding ew gauge singlets/ doublets/ triplets...

```
\Rightarrow new scalar states \Leftarrow
```


IPPP Seminar, 18.1.24

Tania Robens

Extended scalar sectors

Models with extended scalar sectors

Constraints

• Theory

minimization of vacuum (tadpole equations), vacuum stability, positivity, perturbative unitarity, perturbativity of couplings

Experiment

provide viable candidate @ 125 GeV (coupling strength/ width/ ...); agree with null-results from additional searches and ew gauge boson measurements (widths); agree with electroweak precision tests (typically via S,T,U); agree with astrophysical observations (if feasible)

Limited time \Rightarrow next slides highly selective...

[long list of models, see e.g. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG3]

tools used: HiggsBounds, HiggsSignals, 2HDMC, micrOMEGAs, ...

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples for current constraints: Singlet extension, Z_2 symmetric: + 1 scalar particle [TR, arXiv:2209.15544; updated using HiggsTools]

 $\mathbf{V}(\mathbf{\Phi},\mathbf{S}) = -\mathbf{m}^{2}\mathbf{\Phi}^{\dagger}\mathbf{\Phi} - \mu^{2}\mathbf{S}^{2} + \lambda_{1}(\mathbf{\Phi}^{\dagger}\mathbf{\Phi})^{2} + \lambda_{2}\mathbf{S}^{4} + \lambda_{3}\mathbf{\Phi}^{\dagger}\mathbf{\Phi}\mathbf{S}^{2}$

new parameters: m_2 , $\sin \alpha$ [= 0 for SM], $\tan \beta$ [= ratio of vevs]

[update from Review in Physics (2020) 100045]

[see e.g. Pruna, TR, Phys. Rev. D 90, 114018; (Bojarski, Chalons,) Lopez-Val, TR, Phys. Rev. D 90, 114018, JHEP 1602 (2016) 147; (Ilnicka), TR, Stefaniak, EPJC (2015) 75:105, Eur.Phys.J. C76 (2016) no.5, 268, Mod.Phys.Lett. A33 (2018)]

Tania Robens

Extended scalar sectors

Most up-to-date search constraints for 2HDM type I

[thanks to K. Radychenko, tool presented in 2309.17431]

< E

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Search references

- CMS, 36 fb⁻¹, JHEP 04 (2020) 171, JHEP 03 (2022) 187 (erratum)
- ATLAS, 36 ${\rm fb}^{-1}$, Phys.Lett.B 783 (2018) 392-414
- CMS, 36 fb⁻¹, JHEP 07 (2020) 126
- ATLAS, 36 fb⁻¹, JHEP 09 (2018) 139
- CMS, 36 fb⁻¹, Eur.Phys.J.C 79 (2019) 7, 564
- ATLAS, 139 fb⁻¹, JHEP 06 (2021) 145
- \bullet ATLAS, 139 ${\rm fb}^{-1},$ Eur.Phys.J.C 81 (2021) 4, 332
- CMS, 138 fb⁻¹, JHEP 07 (2023) 073
- ATLAS, 139 fb⁻¹, Phys.Lett.B 822 (2021) 136651
- \bullet ATLAS, 139 ${\rm fb^{-1}}$, ATLAS-CONF-2021-030

<ロ> (日) (日) (日) (日) (日)

2HDM parameter space

[F. Kling, S. Su, W. Su, JHEP 06 (2020) 163]

Extended scalar sectors

IPPP Seminar, 18.1.24

-

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CMS MSSM summary plots, early Run II

[https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG]

IPPP Seminar, 18.1.24

Image: A math a math

Direct searches and signal strength

Via HiggsBounds/ HiggsSignals

Relevant BSM searches:

 $\begin{array}{l} H/A \rightarrow \tau \tau \quad \mbox{[ATLAS Run II, Phys.Rev.Lett. 125 (2020) no.5, 051801],} \\ H \rightarrow h_{125}h_{125} \quad \mbox{[ATLAS 2018 data, JHEP 1901 (2019) 030],} \\ A \rightarrow H/h_{125}Z \quad \mbox{[ATLAS 2018/ full Run 2 data, Phys.Lett. B783 (2018) 392-414, ATLAS-CONF_2020-043]} \\ \hline \mbox{Tania Robens} \qquad \mbox{Extended scalar sectors} \qquad \mbox{[PPP Seminar, 18.1.24]} \end{array}$

Reminder: decays of a SM-like Higgs of mass $M \neq 125 \, { m GeV}$

(using HDecay, courtesy J.Wittbrodt)

(https://twiki.cern.ch/twiki/bin/view/LHCPhysics

/LHCHXSWGCrossSectionsFigures)

< 口 > < 🗗

Extended scalar sectors

$h_1h_1h_1$ production cross sections, leading order [pb]

highest values: $\sim 50 \text{fb}$ for $M_2 \sim 250 \text{ GeV}, M_3 \sim 400 - 450 \text{GeV}$

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

< 🗇 🕨 🔸

Current back of the envelope accuracy estimates

[for triple couplings, from M. Selvaggis talk at Higgs Pairs mini-workshop 09/21, and Snowmass WPs arXiv:2203.07622 (ILC)/ arXiv:2203.07646 (C^3)]

- HL-LHC/ ILC₂₅₀/ CLIC₃₈₀/ CEPC₂₄₀/ $C_{250}^3 \sim 50\%$
- FCC-ee_{240/365}, ILC₅₀₀, C³₅₅₀ ∼ 20 − 27%
- \bullet ILC_{\rm 500-1000GeV}, CLIC_{\rm 3TeV} \sim 8-11\%
- FCC-hh $\sim 3.5 8\%$
- $\mu\mu_{30\text{TeV}} \sim 2-3\%$

[*HH*/ single *H*; recent updates not included]

? What about quartic couplings ?

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▲ 差 ▶ 差 ∽ � �

Incomplete list of papers looking at quartic coupling

- W. Bizon, U. Haisch and L. Rottoli, Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders, JHEP 10 (2019) 267 [1810.04665].
- S. Borowka, C. Duhr, F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, Probing the scalar potential via double Higgs boson production at hadron colliders, JHEP 04 (2019) 016 [1811.12366].
- T. Liu, K.-F. Lyu, J. Ren and H.X. Zhu, Probing the quartic Higgs boson self-interaction, Phys. Rev. D98 (2018) 093004 [1803.04359].
- J. Alison et al., Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5 (2020) 100045 [1910.00012].
- A. Papaefstathiou and K. Sakurai, Triple Higgs boson production at a 100 TeV proton-proton collider, JHEP 02 (2016) 006 [1508.06524].
- C.-Y. Chen, Q.-S. Yan, X. Zhao, Y.-M. Zhong and Z. Zhao, Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider, Phys. Rev. D93 (2016) 013007 [1510.04013].
- D.A. Dicus, C. Kao and W.W. Repko, Self Coupling of the Higgs boson in the processes $p p \rightarrow ZHHH + X$ and $p p \rightarrow WHHH + X$, Phys. Rev. D93 (2016) 113003 [1602.05849].
- R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Rep. (2017) 255 [1606.09408].
- B. Fuks, J.H. Kim and S.J. Lee, Scrutinizing the Higgs quartic coupling at a future 100 TeV proton-proton collider with taus and b-jets, Phys. Lett. B771 (2017) 354 [1704.04298].
- A. Papaefstathiou, G. Tetlalmatzi-Xolocotzi and M. Zaro, Triple Higgs boson production to six b-jets at a 100 TeV proton collider, Eur. Phys. J. C 79 (2019) 947 [1909.09166]. [-1.7;13]
- F. Maltoni, D. Pagani and X. Zhao, Constraining the Higgs self-couplings at e+e- colliders, JHEP 07 (2018) 087 [1802.07616]. CLIC_{3TeV} [-5; 7]
- M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini and X. Zhao, Measuring the quartic Higgs self-coupling at a multi-TeV muon collider, JHEP 09 (2020) 098 [2003.13628]. all [0; 2] best (30TeV) [0.7; 1.5]

Tania Robens

Extended scalar sectors

Finite width: Input and crucial quantities

	Benchmark scan no 1	benchmark scan no 2	
m_{h_1}	$125.09~{ m GeV}$	$125.09~{ m GeV}$	
m_{h_2}	$300 { m GeV}$	$600 { m GeV}$	
aneta	3.3	1.6	
$\sin heta$	0.17	0.17	
Γ_{h_2}	$0.5408 { m GeV}$	$4.9802 { m GeV}$	
$\mathrm{BR}_{h_2 o h_1 h_1}$	0.5519	0.3396	
$\Gamma_{ ilde{h_2}}$	$20 { m MeV}$	$20 { m MeV}$	
	Cross Sections		
$pp \rightarrow h_1 h_1$	(69.858 ± 0.015) fb	$(25.573 \pm 0.101) { m fb}$	
$pp ightarrow h_2$	$(106.47 \pm 0.003) { m fb}$	$(23.075 \pm 0.0007) { m fb}$	
$pp ightarrow h_2 ightarrow h_1 h_1$	$(58.628 \pm 0.002) { m fb}$	$(7.8852 \pm 0.0003) { m fb}$	
$pp ightarrow h_1 h_1 ackslash h_2$	$(14.179 \pm 0.0008) { m fb}$	$(14.083 \pm 0.0007) { m fb}$	
$pp ightarrow ilde{h_2} ightarrow h_1 h_1$	$(1588.6 \pm 0.08){ m fb}$	$(1951.2 \pm 0.05){ m fb}$	

Э

<ロ> (日) (日) (日) (日) (日)

What about different collider reaches ?

- many different future colliders are discussed [past- HL-LHC]
- o current focus: Higgs factories (e⁺e[−], √s ~ 250 GeV) interesting: compare possible reach ?
- will do a _superficial_ comparison for a specific model
- of course more detailed studies called for

3

Image: A matched block of the second seco

Singlet extensions [TR, arXiv:2203.08210 and Symmetry 2023, 15(1), 27]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J.C 80 (2020) 2, 151]

 low-low: both additional scalars below 125 GeV; high-low: one new scalar above 125 GeV

Tania Robens

Extended scalar sectors

IPPP Seminar, 18.1.24

▲ ▶ ▲

courtesy of A.F.Zarnecki, 01/24

Extended scalar sectors