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End of Inflation

PBHs evaporate at BBN

PBHs evaporate today

LIGO/VIRGO Progenitors

SMBHs, LSS?

QCD Phase Transition

BBN

PBHs as DM ?

See for reviews in [Carr et al.- 2020, Sasaki et al - 2018, Clesse et al. - 2017]
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mPBH = γMH ∝ H−1 where γ ∼ O(1)
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PBHs and GWs

• 1) Primordial induced GWs generated through second order gravitational 
effects: , [Bugaev - 2009, Kohri & Terada - 2018].  

• 2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. - 
2008, Dong et al. - 2015].


• 3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].


• 4) GWs induced at second order by PBH energy density fluctuations 
[Papanikolaou et al. - 2020]. 
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PBH-dominated era phenomenology

• GWs induced by PBH energy density fluctuations can interpret in a very good 
agreement the recently released PTA GW data [Lewicki et al. - 2023, Basilakos et al. 
- 2023]
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  can be seen as an isocurvature perturbation.δPBH

This isocurvature perturbation,  generated during the RD era will convert 
during the PBHD era to a curvature perturbation , associated to a PBH 
gravitational potential .
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• The equation of motion for the Fourier 2nd order modes , read as:h ⃗k

hs,′￼′￼

⃗k
+ 2ℋhs,′￼

⃗k
+ k2hs

⃗k
= 4Ss

⃗k
.
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• The equation of motion for the Fourier 2nd order modes , read as:


• The source term,  can be recast as:

h ⃗k

S ⃗k

hs,′￼′￼

⃗k
+ 2ℋhs,′￼

⃗k
+ k2hs

⃗k
= 4Ss

⃗k
.

Ss
⃗k
= ∫

d3 ⃗q
(2π)3/2

es
ij( ⃗k)qiqj [2Φ ⃗qΦ ⃗k− ⃗q +

4
3(1 + w)

(ℋ−1Φ′￼⃗q + Φ ⃗q)(ℋ−1Φ′￼⃗
k− ⃗q

+ Φ ⃗k− ⃗q)] .
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ΩGW(η, k) ≡
1

ρtot

dρGW

d ln k
=

1
24 ( k

a(η)H(η) )
2

𝒫h(η, k),

with 𝒫h(η, k) ≡
k3 |hk |2

2π2
∝ ∫ dv∫ du (∫ f(v, u, k, η)dη)

2

𝒫Φ(kv)𝒫Φ(ku) .



 

• By accounting on BBN bounds on the GW amplitude at , one can set upper bound 
constraints on the  readings as

k ∼ kUV
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[Domenech et al. - 2020]

GW Detectability

[Papanikolaou et al. - 2020]

ΩPBH,f < 10−6 ( MPBH

104g )
−17/24

.
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[S. Matarrese et al. - 1986, 

S. Matarresse and L. Verde - 2008] 

[Path integral formalism for n-point 
correlation functions (galaxy halo bias)]

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k



Primordial non-Gaussianities of local type
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𝒫δPBH
(k) ≃ 𝒫ℛ(k)ν4 ( 4

9σR )
4

∫
d3p1d3p2

(2π)6
τNL(p1, p2, p1, p2)W2

local(p1)W2
local(p2)Pℛ(p1)Pℛ(p2)

+
k3

2π2
(k − independent terms)

kR ≪ 1 R ∼ 1/kf

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k

[Suyama & Yokoyama - 2019]
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kR ≪ 1 R ∼ 1/kf

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k
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+
k3

2π2
(k − independent terms)

τ̄NL

{

[Suyama & Yokoyama - 2019]



Primordial non-Gaussianities of local type

32

kR ≪ 1 R ∼ 1/kf

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k

𝒫δPBH
(k) ≃ 𝒫ℛ(k)ν4 ( 4

9σR )
4

∫
d3p1d3p2

(2π)6
τNL(p1, p2, p1, p2)W2

local(p1)W2
local(p2)Pℛ(p1)Pℛ(p2)

+
k3

2π2
(k − independent terms)

τ̄NL

{
𝒫Φ(k) = S2

Φ(k)(5 +
4
9

k2

k2
d )

−2

[( 4ν
9σR )

4

τ̄NL𝒫ℛ(k) + 𝒫δPBH,Poisson(k)]
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Ansatz 1 : 𝒫ℛ = 𝒫ℛ(kf)e
− 1

2σ2 ln2( k
kf ) + 2.2 × 10−9 ( k

0.05Mpc−1 )
0.965−1

, with 𝒫ℛ(kf) ≃ 10−2
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The non-Gaussian PBH matter power spectrum
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 Scale Hierarchy : 105Mpc−1 < kevap < kd < kc < kUV ≪ kf ∼ 1/R
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Constraining non-Gausianities
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ΩGW(2kd, η0) ≤ 10−6 ⇒ τ̄NL𝒫ℛ(k) ≤ 4 × 10−20Ω−17/9
PBH,f ( MPBH

104g )
−17/9
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Conclusions
• GWs induced by PBH isocurvature perturbations can be abundantly produced in 

eMD eras before BBN driven by PBHs and give us access to the early Universe 
given their potential detectability by GW experiments. 

• In particular, by requiring not to have GW overproduction at the end of BBN one can 
set constraints on the abundances of ultralight PBHs with  which 
are otherwise unconstrained by other observational probes.


• Incorporating in the analysis the effect of local-type primordial non-Gaussianities 
on PBH clustering we found a bi-peaked structure of the induced GW signal 
with the low frequency peak being related to the  parameter. 

• Accounting finally for BBN bounds on the GW amplitude we set constraints on 
primordial non-Gaussianities on very small scales , otherwise 
unconstrained by current CMB and LSS probes.


• The portal of PBH induced GWs can serve as a new messenger from the early 
Universe.

mPBH < 109g

τNL

k > 105Mpc−1
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Thanks for your attention!
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The PBH Matter Field

PδPBH
(k) ≡ ⟨ |δPBH

k |2 ⟩ =
4π
3 ( r̄

a )
3

=
4π

3k3
UV

, where k < kUV =
a
r̄

{Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018] 
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S =
δρPBH

ρPBH
−

3
4

δρr

ρr

ρPBH,f ≪ ρr,f

δρPBH,f + δρr,f = 0

{
Sf ≃ δPBH ≡

δρPBH

ρPBH
≃

δnPBH

nPBH
[Isocurvature perturbation]


